


【难点解析】2022年北京市房山区中考数学模拟真题测评 A卷(含答案及解析)
展开2022年北京市房山区中考数学模拟真题测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:①;②;③抛物线与轴的另一个交点的坐标为;④方程有两个不相等的实数根.其中正确的个数为( )
A.个 B.个 C.个 D.个
2、下列关于x的方程中,一定是一元二次方程的是( )
A.ax2﹣bx+c=0 B.2ax(x﹣1)=2ax2+x﹣5
C.(a2+1)x2﹣x+6=0 D.(a+1)x2﹣x+a=0
3、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
4、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )
A. B. C. D.
5、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )
A.增加10% B.增加4% C.减少4% D.大小不变
6、如图,E为正方形ABCD边AB上一动点(不与A重合),AB=4,将△DAE绕着点A逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连接AM,则AM∥FB;②连接FE,当F,E,M共线时,AE=4﹣4;③连接EF,EC,FC,若△FEC是等腰三角形,则AE=4﹣4,其中正确的个数有( )个.
A.3 B.2 C.1 D.0
7、如图,为直线上的一点,平分,,,则的度数为( )
A.20° B.18° C.60° D.80°
8、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )
A.轴 B.轴
C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)
9、如图,已知AD∥BC,欲用“边角边”证明△ABC≌△CDA,需补充条件( )
A.AB = CD B.∠B = ∠D C.AD = CB D.∠BAC = ∠DCA
10、为保护人民群众生命安全,减少交通事故,自2020年7月1日起,我市市民骑车出行必须严格遵守“一盔一带”规定,某头盔经销商经过统计发现:某品牌头盔从5月份到7月份销售量的月增长率相同,若5月份销售200个,7月份销售288个,设月增长率为x则可列出方程( )
A.200(+x)=288 B.200(1+2x)=288
C.200(1+x)²=288 D.200(1+x²)=288
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知关于x的一元二次方程(m﹣1)x2﹣2mx+m+3=0有两个不相等的实数根,则m的取值范围是 ___;
2、有这样一道题:“栖树一群鸦,鸦树不知数;三只栖一树,五只没去处;五只栖一树,闲了一棵树;请你动动脑,算出鸦树数.”前三句的意思是:一群乌鸦在树上栖息,若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦.请你动动脑,该问题中乌鸦有_________只.
3、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.
4、比较大小:-7______-8(填入>”或“<”号)..
5、若∠α=55°25’,则∠α的补角为_______.
三、解答题(5小题,每小题10分,共计50分)
1、深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同.张红与李萍两位同学需要通过该地铁入口乘坐地铁.
(1)张红选择A安全检查口通过的概率是 ;
(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率.
2、如图,已知在△ABC中,AB=AC,∠BAC=80°,AD⊥BC,AD=AB,联结BD并延长,交AC的延长线干点E,求∠ADE的度数.
3、如图,在平面直角坐标系中,顶点的横、纵坐标都是整数.若将以某点为旋转中心,顺时针旋转90°得到,其中A、B、C分别和D、E、F对应.
(1)请通过画图找出旋转中心M,点M的坐标为______.
(2)直接写出点A经过的路径长为______.
4、如图,抛物线y=x2+bx+c(a≠0)与x轴交于4B两点,且点B的坐标为(2,0),与y轴交于点C,抛物线的对称轴为直线x=﹣1,点D为抛物线的顶点,连接AD,AC.
(1)求抛物线的解析式;
(2)如图1,点P是抛物线上第三象限内的一个动点,过点P作PM∥x轴交AC于点M,求PM的最大值及此时点P的坐标;
(3)如图2,将原抛物线向右平移,使得点A刚好落在原点O,M是平移后的抛物线上一动点,Q是直线AC上一动点,直接写出使得由点C,B,M,Q组成的四边形是平行四边形的点Q的坐标;并把求其中一个点Q的坐标的过程写出来.
5、 “疫情未结束,防疫绝不放松”.为了了解同学们掌握防疫知识的情况,增强防疫意识,某校开展了“全民行动•共同抗疫”的自我防护知识网上答题竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:
七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82
八年级10名学生的竞赛成绩在C组中的数据是94,90,94
七、八年级抽取的学生竞赛成绩统计表
年级 | 平均数 | 中位数 | 众数 | 方差 |
七年级 | 92 | 90 | c | 52 |
八年级 | 92 | b | 100 | 50.4 |
八年抽取的学生竞赛成绩扇形统计图
根据以上信息,解答下列问题:
(1)上述图表中a= ,b= ,c= ;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握自我防护知较好?请说明理由(一条理由即可);
(3)该校七、八年级共640人参加了此次网上答题竞赛活动,估计参加竞赛活动成绩优秀(x≥90)的学生人数是多少?
-参考答案-
一、单选题
1、C
【分析】
根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:①如图,开口向上,得,
,得,
抛物线与轴交于负半轴,即,
,
故①错误;
②如图,抛物线与轴有两个交点,则;
故②正确;
③由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,
故③正确;
④如图所示,当时,,
根的个数为与图象的交点个数,
有两个交点,即有两个根,
故④正确;
综上所述,正确的结论有3个.
故选:C.
【点睛】
主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
2、C
【分析】
根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.
【详解】
解:A.当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不符合题意;
B.2ax(x-1)=2ax2+x-5整理后化为:-2ax-x+5=0,不是一元二次方程,故此选项不符合题意;
C.(a2+1)x2-x+6=0,是关于x的一元二次方程,故此选项符合题意;
D.当a=-1时,(a+1)x2-x+a=0不是一元二次方程,故此选项不符合题意.
故选:C.
【点睛】
本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).
3、D
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
4、B
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:641200用科学记数法表示为:641200=,
故选择B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、B
【分析】
设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.
【详解】
设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.
故选:B
【点睛】
本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.
6、A
【分析】
①正确,如图1中,连接AM,延长DE交BF于J,想办法证明BF⊥DJ,AM⊥DJ即可;
②正确,如图2中,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即可解决问题;
③正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题.
【详解】
解:①如下图,连接AM,延长DE交BF于J,
∵四边形ABCD是正方形,
∴AB=AD,∠DAE=∠BAF=90°,
由题意可得AE=AF,
∴△BAF≌△DAE(SAS),
∴∠ABF=∠ADE,
∵∠ADE+∠AED=90°,∠AED=∠BEJ,
∴∠BEJ+∠EBJ=90°,
∴∠BJE=90°,
∴DJ⊥BF,
由翻折可知:EA=EM,DM=DA,
∴DE垂直平分线段AM,
∴BF∥AM,故①正确;
②如下图,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,
在MD上取一点J,使得ME=MJ,连接EJ,
则由题意可得∠M=90°,
∴∠MEJ=∠MJE=45°,
∴∠JED=∠JDE=22.5°,
∴EJ=JD,
设AE=EM=MJ=x,则EJ=JD=x,
则有x+x =4,
∴x=4﹣4,
∴AE=4﹣4,故②正确;
③如下图,连接CF,
当EF=CE时,设AE=AF=m,
则在△BCE中,有2m²=4²+(4-m)2,
∴m=4﹣4或-4﹣4 (舍弃),
∴AE=4﹣4,故③正确;
故选A.
【点睛】
本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.
7、A
【分析】
根据角平分线的定义得到,从而得到,再根据可得,即可求出结果.
【详解】
解:∵OC平分,
∴,
∴,
∵,
∴,
∴,
故选:A.
【点睛】
本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.
8、C
【分析】
利用成轴对称的两个点的坐标的特征,即可解题.
【详解】
根据A点和B点的纵坐标相等,即可知它们的对称轴为.
故选:C.
【点睛】
本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.
9、C
【分析】
由平行线的性质可知,再由AC为公共边,即要想利用“边角边”证明△ABC≌△CDA,可添加AD=CB即可.
【详解】
∵AD∥BC,
∴.
∵AC为公共边,
∴只需AD=CB,即可利用“边角边”证明△ABC≌△CDA.
故选:C.
【点睛】
本题考查平行线的性质,三角形全等的判定.理解“边角边”即为两边及其夹角是解答本题的关键.
10、C
【分析】
设月增长率为x,根据等量关系用增长率表示7月份的销售量与销售288相等,可列出方程200(1+x)²=288即可.
【详解】
解:设月增长率为x,则可列出方程200(1+x)²=288.
故选C.
【点睛】
本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系列方程是解题关键.
二、填空题
1、m<且m≠1
【分析】
根据一元二次方程的定义和判别式的意义得到不等式组:,然后解不等式组即可求出m的取值范围.
【详解】
解:∵关于x的一元二次方程(m-1)x2-2mx+m+3=0有两个不相等的实数根,
∴,
解得m<且m≠1.
故答案为:m<且m≠1.
【点睛】
本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.
2、20
【分析】
设乌鸦有x只,树y棵,直接利用若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦列出方程组,进而得出答案.
【详解】
解:设乌鸦x只,树y棵.依题意可列方程组:
.
解得,
所以,乌鸦有20只
故答案为:20.
【点睛】
此题主要考查了二元一次方程组的应用,正确得出方程组是解题关键.
3、##
【分析】
设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.
【详解】
解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,
设去年甲、乙、丙三种水果的种植面积分别为:
去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,
设去年甲、乙、丙三种水果的平均亩产量分别为:
则今年甲品种水果的平均亩产量为:
乙品种水果的平均亩产量为: 丙品种的平均亩产量为
设今年的种植面积分别为:
甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,
①,②,
解得:
又丙品种水果增加的产量占今年水果总产量的,
解得:
所以三种水果去年的种植总面积与今年的种植总面积之比为:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.
4、
【分析】
根据两个负数比较大小,其绝对值大的反而小比较即可.
【详解】
解:,,
,
,
故答案为:.
【点睛】
本题考查了绝对值和有理数的大小比较,解题的关键是能熟记有理数的大小比较法则的内容,注意:两个负数比较大小,其绝对值大的反而小.
5、
【分析】
根据补角的定义计算.
【详解】
解:∠α的补角为,
故答案为:.
【点睛】
此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
三、解答题
1、
(1)
(2)
【分析】
(1)根据概率公式求解即可;
(2)根据题意先画出树状图得出所有等情况数和选择相同安全检查口通过的情况数,然后根据概率公式即可得出答案.
【小题1】
解:(1)∵有A.B、C三个闸口,
∴张红选择A安全检查口通过的概率是,
故答案为:;
【小题2】
根据题意画图如下:
共有9种等情况数,其中她俩选择相同安全检查口通过的有3种,
则她俩选择相同安全检查口通过的概率是.
【点睛】
本题考查列表法与树状图法,解题的关键是明确题意,正确画出树状图.
2、110°
【分析】
根据等腰三角形三线合一的性质可求∠BAD=∠CAD=∠BAC=40°,根据等腰三角形的性质可求∠BDA,再根据三角形内角和定理即可求解.
【详解】
解:∵AB=AC,∠BAC=80°,AD⊥BC,
∴∠BAD=∠CAD=∠BAC=40°,
∵AD=AB,
∴∠BDA=×(180°﹣40°)=70°,
∴∠ADE=180°﹣∠BDA=180°﹣70°=110°.
【点睛】
本题考查的是三角形的外角的性质,等腰三角形的性质,掌握“等边对等角,等腰三角形的三线合一”是解本题的关键.
3、
(1)
(2)
【分析】
(1)根据对应点连线段的垂直平分线的交点即为旋转中心,可得结论.
(2)根据经过的路径长为以为圆心,3为半径的圆周长的即可求解.
(1)
解:连接,分别作的垂直平分线交点即为所求,如下图:
,
故答案是:;
(2)
解:由题意及下图,
知点经过的路径长为以为圆心,3为半径的圆周长的,
点经过的路径长为:,
故答案是:.
【点睛】
本题考查坐标与图形变化旋转,解题的关键是理解旋转中心是对应点连线段的垂直平分线的交点.
4、
(1)
(2)最大值为2,
(3),或,
【分析】
(1)用待定系数法即可得抛物线的解析式为;
(2)由,得直线解析式为,设,,可得,即得时,的值最大,最大值为2,;
(3)由已知得平移后的抛物线解析式为,设,,而,,①以、为对角线,则的中点即是的中点,即,解得,或,;②以、为对角线,得,方程组无解;③以、为对角线,,解得,或,.
(1)
解:点的坐标为在抛物线,抛物线的对称轴为直线,
,解得,
抛物线的解析式为;
(2)
在中,令得或,
,
在中,令得,
,
设直线解析式为,则,
解得,
直线解析式为,
设,,
由得,
,,
,
,
时,的值最大,最大值为2;
此时;
(3)
将原抛物线向右平移,使得点刚好落在原点,
平移后的抛物线解析式为,
设,,而,,
①以、为对角线,则的中点即是的中点,
,解得,
,或,;
②以、为对角线,
,方程组无解;
③以、为对角线,
,解得,
,或,;
综上所述,,或,.
【点睛】
本题考查二次函数综合应用,涉及待定系数法、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度
5、
(1)a=40,b=94,c=90和96
(2)八年级,理由见解析
(3)416人
【分析】
(1)根据频率=频数÷总数,中位数、众数的计算方法进行计算即可;
(2)比较方差的大小得出答案;
(3)求出七、八年级优秀人数所占的百分比即可.
【小题1】
解:八年级10名学生的竞赛成绩在C组中的数据是:94,94,90,
∴C组所占的百分比为3÷10×100%=30%,
∵1-10%-20%-30%=40%,
即a=40,
八年级A组的有2人,B组的有1人,C组有3人,D组的有4人,将这10人的成绩从小到大排列,处在中间位置的两个数都是94,因此中位数是94,即b=94,
七年级10名学生成绩出现次数最多的是90和96,因此众数是90和96,即c=90和96,
故答案为:40,94,90和96;
【小题2】
八年级学生掌握自我防护知较好,理由:
∵七年级的方差为52,八年级的方差是50.4,而52>50.4,
∴八年级学生的成绩较为稳定,
∴八年级学生掌握自我防护知较好;
【小题3】
640×=416(人),
答:参加竞赛活动成绩优秀(x≥90)的学生人数是416人.
【点睛】
本题考查中位数、众数、平均数、方差以及样本估计总体,掌握平均数、中位数、众数以及方差的计算方法是正确解答的关键.
【难点解析】湖南省株洲市中考数学模拟真题测评 A卷(含答案解析): 这是一份【难点解析】湖南省株洲市中考数学模拟真题测评 A卷(含答案解析),共32页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。
【真题汇总卷】2022年北京市朝阳区中考数学模拟真题测评 A卷(含答案及解析): 这是一份【真题汇总卷】2022年北京市朝阳区中考数学模拟真题测评 A卷(含答案及解析),共25页。试卷主要包含了有依次排列的3个数,下列说法正确的是,下列计算错误的是,下列命题中,是真命题的是等内容,欢迎下载使用。
【难点解析】2022年雷州市中考数学模拟真题测评 A卷(含答案及解析): 这是一份【难点解析】2022年雷州市中考数学模拟真题测评 A卷(含答案及解析),共17页。试卷主要包含了已知,则代数式的值是,下列各组图形中一定是相似形的是,定义一种新运算,下列说法中错误的是,若单项式与是同类项,则的值是等内容,欢迎下载使用。