【历年真题】2022年辽宁省沈阳市中考数学考前摸底测评 卷(Ⅱ)(含详解)
展开2022年辽宁省沈阳市中考数学考前摸底测评 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )
A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
2、在实数,,0.1010010001…,,中无理数有( )
A.4个 B.3个 C.2个 D.1个
3、方程的解是( ).
A. B. C., D.,
4、下列几何体中,俯视图为三角形的是( )
A. B.
C. D.
5、已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取1和3时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
6、如图,的三个顶点和它内部的点,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,…,,把分成( )个互不重叠的小三角形.
A. B. C. D.
7、下列关于x的二次三项式在实数范围内不能够因式分解的是( )
A.x2﹣3x+2 B.2x2﹣2x+1 C.2x2﹣xy﹣y2 D.x2+3xy+y2
8、下列命题,是真命题的是( )
A.两条直线被第三条直线所截,内错角相等
B.邻补角的角平分线互相垂直
C.相等的角是对顶角
D.若,,则
9、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )
A.50° B.65° C.75° D.80°
10、若方程有实数根,则实数a的取值范围是( )
A. B.
C.且 D.且
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若,且,,则________.
2、若a<<a+1,则整数a=___.
3、若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.
4、如图所示,在平面直角坐标系中,.在y轴找一点P,使得的周长最小,则周长最小值为_______
5、在不等式组的解集中,最大的整数解是______.
三、解答题(5小题,每小题10分,共计50分)
1、下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.
解方程组:.
解:①,得③,第一步,
②③,得,第二步,
.第三步,
将代入①,得.第四步,
所以,原方程组的解为.第五步.
填空:
(1)这种求解二元一次方程组的方法叫做______.
、代入消元法
、加减消元法
(2)第______步开始出现错误,具体错误是______;
(3)直接写出该方程组的正确解:______.
2、如图所示,下图是由七块积木搭成,这几块积木都是相同的正方体,利用下面方格纸中的纵横线,画出从这个图形的正面看、左面看和上面看的图形.
3、如图,在中(),,边上的中线把的周长分成和两部分,求和的长.
4、如图,点、分别为的边、的中点,,则______.
5、 “双减”政策实施以来,我校积极探寻更为合理的学生评价方案.班主任石老师对班级学生的学习生活等采取的是量化积分制.下面统计的是博学组和笃行组连续八周的量化积分,并将得到的数据制成如下的统计表:
量化积分统计表(单位:分)
周次 组别 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 |
博学组 | 12 | 14 | 16 | 14 | 14 | 13 | 15 | 14 |
笃行组 | 13 | 11 | 15 | 17 | 16 | 18 | 13 | 9 |
(1)请根据表中的数据完成下表
| 平均数 | 中位数 | 众数 | 方差 |
博学组 |
| 14 | 14 |
|
笃行组 | 14 |
|
| 8.25 |
(2)根据量化积分统计表中的数据,请在下图中画出笃行组量化积分的折线统计图.
(3)根据折线统计图中的信息,请你对这两个小组连续八周的学习生活情况作出一条简要评价.
-参考答案-
一、单选题
1、B
【分析】
根据二次函数图象左加右减,上加下减的平移规律进行求解.
【详解】
解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;
再向上平移5个单位长度,得:y=(x﹣3)2+5,
故选:B.
【点睛】
本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.
2、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:,是整数,属于有理数;
是分数,属于有理数;
无理数有0.1010010001…,,,共3个.
故选:B.
【点睛】
此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
3、C
【分析】
先提取公因式x,再因式分解可得x(x-1)=0,据此解之可得.
【详解】
解:,
x(x-1)=0,
则x=0或x-1=0,
解得x1=0,x2=1,
故选:C.
【点睛】
本题考查了一元二次方程的解法,掌握用因式分解法解一元二次方程是关键.
4、C
【分析】
依题意,对各个图形的三视图进行分析,即可;
【详解】
由题知,对于A选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;
对于B选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;
对于C选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;
对于D选项:主视图:正方形;侧视图:正方形;俯视图:正方形;
故选:C
【点睛】
本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;
5、C
【分析】
把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
【详解】
∵二次函数的图象与轴的交点坐标是,
∴A选项错误;
∵二次函数的图象开口向上,对称轴是直线,
∴当时,的值随值的增大而增大,
∴B选项错误;
∵当取和时,所得到的的值都是11,
∴C选项正确;
∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
∴D选项错误.
故选:C.
【点睛】
本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
6、B
【分析】
从前三个内部点可总结规律,即可得三角形内部有n个点时有个互不重叠的小三角形.
【详解】
由,,三个内部点可总结出规律每增加一个内部点三角形内部增加两个小三角形,
∴的三个顶点和它内部的点,,,…,,把分成个互不重叠的小三角形.
故选:B.
【点睛】
本题考查了图形类规律问题,图形规律就是根据所给出的图形的结构特特征,需要认真分析观察、分析、归纳,从图形所蕴含的数字信息总结出一般的数式规律,然后再应用规律做题.用代数式表示数字或图形的规律,有其自身的解题规律,掌握其正确的解题方法,这类题目将会迎刃而解.
7、B
【分析】
利用十字乘法把选项A,C分解因式,可判断A,C,利用一元二次方程根的判别式计算的值,从而可判断B,D,从而可得答案.
【详解】
解: 故A不符合题意;
令
所以在实数范围内不能够因式分解,故B符合题意;
故C不符合题意;
令
所以在实数范围内能够因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.
8、B
【分析】
利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.
【详解】
解:A、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;
、邻补角的角平分线互相垂直,正确,是真命题,符合题意;
、相等的角不一定是对顶角,故错误,是假命题,不符合题意;
、平面内,若,,则,故原命题错误,是假命题,不符合题意,
故选:.
【点睛】
考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大.
9、B
【分析】
根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.
【详解】
解:如图,
根据题意得:BG∥AF,
∴∠FAE=∠BED=50°,
∵AG为折痕,
∴ .
故选:B
【点睛】
本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.
10、B
【分析】
若方程为一元二次方程,则有,,求解;若,方程为一元一次方程,判断有实数根,进而求解取值范围即可.
【详解】
解:若方程为一元二次方程,则有,
解得且
若,方程为一元一次方程,有实数根
故选B.
【点睛】
本题考查了一元二次方程根的判别,一元一次方程的根.解题的关键在于全面考虑的情况.
二、填空题
1、
【分析】
先根据,且,求出a、b的值,然后代入计算.
【详解】
解:∵,,
∴a=±3,b=±5,
∵,,
∴a=-3,b=5,
∴ (-3)3+2×5=-17.
故答案为:-17.
【点睛】
本题考查了绝对值的知识,以及求代数式的值,正确求出a、b的值是解答本题的关键.
2、3
【分析】
估算出的取值范围即可求出a的值.
【详解】
解:∵,
∴3<<4,
∵a<<a+1,
∴a=3,
故答案为:3.
【点睛】
此题主要考查了估算无理数的大小,在确定形如(a≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.
3、3 4 (3,﹣4)
【分析】
根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解.
【详解】
解:∵A(x,4)关于y轴的对称点是B(-3,y),
∴x=3,y=4,
∴A点坐标为(3,4),
∴点A关于x轴的对称点的坐标是(3,-4).
故答案为:3;4;(3,-4).
【点睛】
本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解.
4、
【分析】
作点B关于y轴的对称点C,连接AC,与y轴的交点即为满足条件的点P,由勾股定理求出AC、AB的长,即可求得周长最小值.
【详解】
作点B关于y轴的对称点C,则点C的坐标为,连接AC,与y轴的交点即为满足条件的点P,如图所示
由对称的性质得:PB=PC
∴AB+PA+PB=AB+PA+PC≥AB+AC
即当点P在AC上时,周长最小,且最小值为AB+AC
由勾股定理得:,
∴周长最小值为
故答案为:
【点睛】
本题考查了点与坐标,两点间距离最短,对称的性质,勾股定理等知识,作点关于x轴的对称点是关键.
5、4
【分析】
先求出不等式的解集,再求出不等式组的解集,找出不等式组的最大整数解即可.
【详解】
解: ,
解不等式①得,x≥2,
解不等式②得, ,
∴不等式组的解集为,
∴不等式组的最大整数解为4.
故答案为:4.
【点睛】
本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.
三、解答题
1、
(1)B
(2)二;应该等于
(3)
【分析】
(1)②−③消去了x,得到了关于y的一元一次方程,所以这是加减消元法;
(2)第二步开始出现错误,具体错误是−3y−(−4y)应该等于y;
(3)解方程组即可.
(1)
解:②③消去了,得到了关于的一元一次方程,
故答案为:;
(2)
解:第二步开始出现错误,具体错误是应该等于,
故答案为:二;应该等于;
(3)
解:②③得,
将代入①,得:,
原方程组的解为.
故答案为:.
【点睛】
本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
2、图见解析
【分析】
从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右3列正方形的个数依次为1,2,1;画出从正面,左面,上面看,得到的图形即可.
【详解】
解:如图所示:
【点睛】
本题考查了作图−−三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.
3、,
【分析】
由题意可得,,由中线的性质得,故可求得,即可求得.
【详解】
由题意知,,
∵,D为BC中点
∴
∴
即
则BC=24,CD=BD=12
则
且28>24符合题意.
【点睛】
本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.
4、6
【分析】
根据三角形中位线定理解答即可.
【详解】
解:∵D,E分别是△ABC的边AB,BC的中点,
∴DE是△ABC的中位线,
∴AC=2DE=6,
故答案为:6.
【点睛】
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
5、
(1)见解析
(2)见解析
(3)博学组的学生学习生活更好
【分析】
(1)根据平均数,中位数,众数,方差的定义求解即可;
(2)根据题目所给数据画出对应的折线统计图即可;
(3)可从众数和方差的角度作评价即可.
(1)
解:由题意得博学组的平均数,
∴博学组的方差
把笃行组的积分从小到大排列为:9、11、13、13、15、16、17、18,
∴笃行组的中位数,
∵笃行组中13出现的次数最多,
∴笃行组的众数为13,
∴填表如下:
| 平均数 | 中位数 | 众数 | 方差 |
博学组 | 14 | 14 | 14 | 1.25 |
笃行组 | 14 | 14 | 13 | 8.25 |
(2)解:如图所示,即为所求;
(3)
解:由(1)可知,博学组和笃行组的平均数和中位数都相同,但是博学组的众数大于笃行组的众数,博学组的方差小于笃行组的方差,
∴可知博学组的学生学习生活更好.
【点睛】
本题主要考查了求平均数,众数,中位数,方差,画折线统计图,用方差和众数作出评价等等,熟知相关知识是解题的关键.
【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解),共39页。试卷主要包含了若,则下列不等式正确的是,把 写成省略括号后的算式为,下列说法中正确的个数是,某玩具店用6000元购进甲,下列变形中,正确的是等内容,欢迎下载使用。
【历年真题】2022年河北省石家庄市中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年河北省石家庄市中考数学考前摸底测评 卷(Ⅱ)(含详解),共25页。试卷主要包含了计算的值为,若分式有意义,则的取值范围是,下列变形中,正确的是等内容,欢迎下载使用。
【历年真题】2022年河北保定中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【历年真题】2022年河北保定中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共26页。试卷主要包含了方程的解为,如图,在数轴上有三个点A,下列运算中,正确的是,已知,,,则等内容,欢迎下载使用。