初中北京课改版第四章 一元一次不等式和一元一次不等式组综合与测试习题
展开这是一份初中北京课改版第四章 一元一次不等式和一元一次不等式组综合与测试习题,共21页。试卷主要包含了如果关于x的方程ax﹣3等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不等式组的解集在数轴上应表示为( )
A. B.
C. D.
2、不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
3、在数轴上表示不等式﹣1<x2,其中正确的是( )
A. B.
C. D.
4、如果x>y,则下列不等式正确的是( )
A.x﹣1<y﹣1 B.5x<5y C. D.﹣2x>﹣2y
5、如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为( )
A.3 B.4 C.5 D.6
6、关于x的分式方程的解是正数,则字母m的取值范围是( )
A. B. C.且 D.且
7、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )
A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<0
8、如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为( )
A. B.
C. D.
9、不等式x+2<0的解在数轴上的表示正确的是( )
A. B.
C. D.
10、如图,下列结论正确的是( )
A.c>a>b B. C.|a|<|b| D.abc>0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于的不等式的解集如图所示,则的值为_____.
2、判断正误:
(1)由,得;( )
(2)由,得;( )
(3)由,得;( )
(4)由,得;( )
(5)由,得;( )
(6)由,得.( )
3、不等式组的解集是___________.
4、据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为______元.
5、如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围为_____________.
三、解答题(5小题,每小题10分,共计50分)
1、解下列一元一次不等式组:
(1);
(2).
2、解不等式,并将解集在数轴上表示;
3、解不等式组求它的整数解:
4、解不等式3x﹣1≤x+3,并把解在数轴上表示出来.
5、解下列不等式组
(1)
(2).
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
在数轴上把不等式组的解集表示出来,即可选项答案.
【详解】
解:不等式组的解集在数轴上应表示为:
故选:B.
【点睛】
本题考查了在数轴上表示不等式组的解集等知识点,注意:在数轴上表示不等式组的解集时,包括该点时用实心点,不包括该点时用空心点.
2、C
【解析】
【分析】
根据不等式组的解集的表示方法即可求解.
【详解】
解:∵不等式组的解集为
故表示如下:
故选:C.
【点睛】
本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
3、A
【解析】
【分析】
不等式﹣1<x≤2在数轴上表示不等式x>﹣1与x≤2两个不等式的公共部分,据此求解即可.
【详解】
解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.
故在数轴上表示不等式﹣1<x⩽2如下:
故选A.
【点睛】
本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
4、C
【解析】
【分析】
根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
【详解】
解:A.∵x>y,
∴x﹣1>y﹣1,故本选项不符合题意;
B.∵x>y,
∴5x>5y,故本选项不符合题意;
C.∵x>y,
∴,故本选项符合题意;
D.∵x>y,
∴﹣2x<﹣2y,故本选项不符合题意;
故选:C.
【点睛】
此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.
5、C
【解析】
【分析】
先解关于y的不等式组可得解集为,根据关于y的不等式组有解可得,由此可得,再解关于x的方程可得解为,根据关于x的方程ax﹣3(x+1)=1﹣x有整数解可得的值为整数,由此可求得整数a的值,由此即可求得答案.
【详解】
解:,
解不等式①,得:,
解不等式②,得:,
∴不等式组的解集为,
∵关于y的不等式组有解,
∴,
解得:,
∵ax﹣3(x+1)=1﹣x,
∴ax﹣3x﹣3=1﹣x,
∴ax﹣3x+x=1+3,
∴(a﹣2)x=4,
∵关于x的方程ax﹣3(x+1)=1﹣x有整数解,a为整数,
∴a﹣2=4,2,1,﹣1,﹣2,﹣4,
解得:a=6,4,3,1,0,﹣2,
又∵,
∴a=4,3,1,0,﹣2,
∴符合条件的所有整数a的个数为5个,
故选:C
【点睛】
此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键.
6、A
【解析】
【分析】
解分式方程,得到含字母m的方程,解此方程,再根据该方程的解是整数,结合分式方程的分母不为零,得到两个关于字母m的不等式,解之即可.
【详解】
解:
方程两边同时乘以(x+1),得到
因为分式方程的解是正数,
故选:A.
【点睛】
本题考查分式方程的解、解一元一次不等式等知识,难度较易,掌握相关知识是解题关键.
7、B
【解析】
【分析】
化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.
【详解】
解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,
∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;
∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;
∵a<﹣1,∴a+1<0,故C判断错误,不合题意;
∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.
故选:B.
【点睛】
本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.
8、A
【解析】
【分析】
根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解.
【详解】
解:由图可知,,
∴m的取值范围在数轴上表示如图:
.
故选:A
【点睛】
本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键.
9、D
【解析】
【分析】
先求出不等式的解集,再在数轴上表示出来即可.
【详解】
解:移项得,x<﹣2,
在数轴上表示为:,
故选:D.
【点睛】
本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.
10、B
【解析】
【分析】
根据数轴可得:再依次对选项进行判断.
【详解】
解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大,
即可得:,
A、由,得,故选项错误,不符合题意;
B、,根据不等式的性质可得:,故选项正确,符合题意;
C、,可得,故选项错误,不符合题意;
D、,故,故选项错误,不符合题意;
故选:B.
【点睛】
本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出.
二、填空题
1、3
【解析】
【分析】
由数轴可以得到不等式的解集是x>﹣2,根据已知的不等式可以用关于m的式子表示出不等式的解集.就可以得到一个关于m的方程,可以解方程求得.
【详解】
解:解不等式x+m>1得
由数轴可得,x>﹣2,
则
解得,m=3.
故答案为:3.
【点睛】
本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x>﹣2.并且本题是不等式与方程相结合的综合题.
2、 正确 正确 正确 正确 错误 错误
【解析】
【分析】
根据不等式的性质解答即可.
【详解】
解:∵2a>3,
∴不等式的两边都除以2得:a>,
∴(1)正确;
∵2-a<0,
∴-a<-2,
∴a>2,
∴(2)正确;
∵,
∴不等式的两边都乘以2得:,
∴(3)正确;
∵,
∴不等式的两边都加上m得:,
∴(4)正确;
∵,
∴不等式的两边都乘以-3得:,
∴(5)错误;
∵,
∴不等式的两边都乘以a不能得到:,
∵a的正负不能确定,
∴(6)错误;
【点睛】
本题考查了不等式的基本性质的应用,注意:不等式的基本性质有①不等式的两边都加上或都减去同一个数或整式,不等式的符号不改变,②不等式的两边都乘以或都除以同一个正数,不等式的符号不改变,③不等式的两边都乘以或都除以同一个负数,不等式的符号要改变.
3、
【解析】
【分析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【详解】
解不等式①得:
解不等式②得:
不等式组的解集是
故答案为:
【点睛】
本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.
4、
【解析】
【分析】
设《长津湖》的销售单价为m元,则《五个扑水的少年》销售单价为n元;《长津湖》的日销售量a本,《铁道英雄》日销售量为b本,则《我和我的父辈》销售单价为m元,《铁道英雄》的销售单价为3n元;《五个扑水的少年》的日销售量为a本,《我和我的父辈》的日销售量为3b元,根据题意,列出相应的方程和不等式,得出未知数的取值范围,最后根据当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即可求解.
【详解】
解:设《长津湖》的销售单价为m元,则《五个扑水的少年》销售单价为n元;《长津湖》的日销售量a本,《铁道英雄》日销售量为b本,则《我和我的父辈》销售单价为m元,《铁道英雄》的销售单价为3n元;《五个扑水的少年》的日销售量为a本,《我和我的父辈》的日销售量为3b元,
∵《长津湖》与《铁道英雄》的日销售量和为450本,
∴a+b=450,即b=450-a,
∵《长津湖》的日销售量不低于《铁道英雄》的日销售量的且小于230本,
∴ ,即,
解得: ,
∵《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元,
∴ ,
∵《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,
∴ ,
∵b=450-a,
∴,
∴ ,
∴ ,
∵,
∴,
∴ ,即 ,
∴当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即 最大,
∴此时的值最小,则m最大,
∵,
∴a的最小值为180,
将a=180代入,
解得: ,
即 ,
∵,
∴,即 ,
∵m最大,
∴ ,即当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为元.
故答案为:
【点睛】
本题主要考查了一元一次不等式的应用等知识,根据题意设未知数,建立相应的方程和不等式求出未知数的值或取值范围是解决问题的关键.
5、1<m<2
【解析】
【分析】
根据左右两个天平的倾斜得出不等式即可;
【详解】
由第一幅图得m>1,由第二幅图得m<2,故1<m<2;
故答案是:1<m<2.
【点睛】
本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.
三、解答题
1、(1)-3≤x<2(2)<x≤
【解析】
【分析】
(1)分别求出各不等式的解集,再求出其公共解集即可.
(2)分别求出各不等式的解集,再求出其公共解集即可.
【详解】
(1)解
解不等式①得x≥-3;
解不等式②得x<2;
∴不等式组的解集为-3≤x<2;
(2)解.
解不等式①得x>;
解不等式②得x≤;
∴不等式组的解集为<x≤.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.
2、,数轴表示见解析
【解析】
【分析】
先去分母,然后再求解一元一次不等式即可.
【详解】
解:
去分母得:,
去括号得:,
移项、合并同类项得:,
系数化为1得:;
数轴表示如下:
【点睛】
本题主要考查一元一次不等式的解法,熟练掌握一元一次不等式的解法是解题的关键.
3、不等式组的解集为,不等式组的整数解为3.
【解析】
【分析】
先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可.
【详解】
解:
解不等式①得:,
解不等式②得:,
∴不等式组的解集为,
∴不等式组的整数解为3.
【点睛】
本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法.
4、x≤2;数轴表示见解析.
【解析】
【分析】
按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.
【详解】
解:,
移项,得,
合并同类项,得,
系数化为1,得x≤2,
把解集在数轴上表示如图所示:
【点睛】
本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.
5、(1)-5≤x<-2;(2)
【解析】
【分析】
(1)按不等式的解法求出两个不等式的解集,在求其公共解,即可解答
(2)将原不等式变形得:,求出两个不等式的解集,在求其公共解,即可解答
【详解】
(1)解不等式,得
解不等式,得
故不等式组的解集为.
(2)原不等式可变为:
解①得:
解②得:
故原不等式组的解集为.
【点睛】
本题考查了一元一次不等式组解集的求法,熟记不等式组的解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)是解题关键.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试课后作业题,共16页。试卷主要包含了下列式子正确的,不一定相等的一组是,下列结论中,正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后练习题,共17页。试卷主要包含了下列运算正确的是,下列关于整式的说法错误的是,下列运算中,正确的是,计算的结果是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课堂检测,共17页。试卷主要包含了下列做法正确的是等内容,欢迎下载使用。