![精品试卷:京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练练习题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12675798/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷:京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练练习题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12675798/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷:京改版七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练练习题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12675798/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试一课一练
展开
这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试一课一练,共19页。试卷主要包含了如果,那么下列不等式中正确的是,关于x的方程3﹣2x=3等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果 , 那么下列不等式中不成立的是( )A. B.C. D.2、对于不等式4x+7(x-2)>8不是它的解的是( )A.5 B.4 C.3 D.23、不等式的解集在数轴上表示正确的是( )A. B.C. D.4、如果,那么下列不等式中正确的是( )A. B.C. D.5、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为( )A.5 B.2 C.4 D.66、已知关于x的不等式组只有四个整数解,则实数a的取值范围( )A.﹣3≤a<﹣2 B.﹣3≤a≤﹣2 C.﹣3<a≤﹣2 D.﹣3<a<﹣27、不等式的整数解是1,2,3,4.则实数a的取值范围是( )A. B. C. D.8、若m>n,则下列选项中不成立的是( )A.m+4>n+4 B.m﹣4>n﹣4 C. D.﹣4m>﹣4n9、有两个正数a,b,且a<b,把大于等于a且小于等于b的所有数记作[a,b].例如,大于等于1且小于等于4的所有数记作[1,4].若整数m在[5,15]内,整数n在[﹣30,﹣20]内,那么的一切值中属于整数的个数为( )A.6个 B.5个 C.4个 D.3个10、关于的不等式的解集如图所示,则的值是( )A.0 B. C.2 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把一堆花生分给一群猴子,如果每只猴子分3颗,就剩8颗;如果每只猴子分5颗,那么最后一只猴子分到的花生不足5颗.求猴子的只数与花生的颗数分别为________.2、假设a>b,请用“>”或“<”填空(1)a-1________b-1; (2)2a______2b;(3)_______; (4)a+1________b+1.3、若关于x的不等式组的整数解共有5个,则a的取值范围_________.4、关于x的不等式组有且只有五个整数解,则a的取值范围为__________.5、 “x的2倍与3的差小于5”用不等式表示为:_________.三、解答题(5小题,每小题10分,共计50分)1、解不等式组,并把解集在数轴上表示出来.2、下列式子中,是一元一次不等式的有哪些?(1)3x+5=0;(2)2x+3>5;(3);(4)≥2;(5)2x+y≤83、解下列不等式:(1);(2).4、解不等式组,并求出它的所有整数解的和.5、某童装店按每套90元的价格购进40套童装,然后按标价打九折售出,如果要获得不低于900元的利润,每套童装的标价至少是_____元. ---------参考答案-----------一、单选题1、D【解析】【分析】根据不等式的性质逐个判断即可.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.【详解】解:A、∵,∴,选项正确,不符合题意;B、∵,∴,选项正确,不符合题意;C、∵,∴,选项正确,不符合题意;D、∵,∴,选项错误,符合题意.故选:D.【点睛】此题考查了不等式的性质,解题的关键是熟练掌握不等式的性质.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.2、D【解析】【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x=5时,4x+7(x-2)=41>8, 当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.3、A【解析】【分析】先解不等式,再利用数轴的性质解答.【详解】解:解得,∴不等式的解集在数轴上表示为:故选:A.【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键.4、A【解析】【分析】根据不等式的性质解答.【详解】解:根据不等式的性质3两边同时除以2可得到,故A选项符合题意;根据不等式的性质1两边同时减去1可得到,故B选项不符合题意; 根据不等式的性质2两边同时乘以-1可得到,故C选项不符合题意; 根据不等式的性质1和2:两边同时乘以-1,再加上2可得到,故D选项不符合题意; 故选:A.【点睛】此题考查不等式的性质:性质一:不等式两边加减同一个数,不等号方向不变;性质二:不等式两边同乘除同一个正数,不等号方向不变;性质三:不等式两边同乘除同一个负数,不等号方向改变.5、C【解析】【分析】先求出3﹣2x=3(k﹣2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x,∵方程的解为非负整数,∴0,∴,把整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.6、C【解析】【分析】先求出不等式解组的解集为,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.【详解】解:解不等式①得;解不等式②得;∵不等式组有解,∴不等式组的解集是,∴不等式组只有4个整数解,∴不等式组的4个整数解是:1、0、-1、-2,∴故选C.【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.7、A【解析】【分析】先确定 再分析不符合题意,确定 再解不等式,结合不等式的整数解可得:,从而可得答案.【详解】解: 显然: 当时,不等式的解集为:,不等式没有正整数解,不符合题意,当时,不等式的解集为: 不等式的整数解是1,2,3,4, 由①得: 由②得: 所以不等式组的解集为:故选A【点睛】本题考查的是根据不等式的整数解确定参数的取值范围,掌握“解不等式时,不等式的左右两边都乘以或除以同一个负数时,不等号的方向改变”是解题的关键.8、D【解析】【分析】根据不等式的基本性质进行解答即可.【详解】解:∵m>n,A、m+4>n+4,成立,不符合题意;B、m﹣4>n﹣4,成立,不符合题意;C、,成立,不符合题意;D、﹣4m﹣4n,原式不成立,符合题意;故选:D.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解本题的关键.9、B【解析】【分析】根据已知条件得出5≤m≤15,−30≤n≤−20,再得出的范围,即可得出整数的个数.【详解】解:∵m在[5,15]内,n在[−30,−20]内,∴5≤m≤15,−30≤n≤−20,∴−≤≤,即−6≤≤−,∴的一切值中属于整数的有−2,−3,−4,−5,−6,共5个;故选:B.【点睛】此题考查了不等式组的应用,求出5≤m≤15和−30≤n≤−20是解题的关键.10、C【解析】【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【详解】解:解不等式,得 ,∵由数轴得到解集为x≤-1,∴ ,解得:a=2,故选C.【点睛】本题考查解不等式和不等式解集的数轴表示,解题关键是根据数轴上的表示准确确定不等式的解集.二、填空题1、5只和23颗或6只和26颗.【解析】【分析】设猴子的只数为x只,根据题意列出不等式组,求整数解即可.【详解】解:设猴子的只数为x只,根据题意列出不等式组得,,解得,,因为x为整数是,所以,或,花生的颗数为颗或颗故答案为:5只和23颗或6只和26颗.【点睛】本题考查了一元一次不等式组的应用,解题关键是准确把握题目中的不等量关系,列出不等式组.2、 > > < >【解析】【分析】(1)根据不等式的性质:两边同时减去一个数,不等号方向不变号,即可得;(2)根据不等式的性质:两边同时乘以一个正数,不等号方向不变号,即可得;(3)根据不等式的性质:两边同时乘以一个负数,不等号方向变号,即可得;(4)根据不等式的性质:两边同时加上一个数,不等号方向不变号,即可得.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴;(4)∵,∴;故答案为:①;②;③;④.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的基本性质是解题关键.3、﹣1<a≤0【解析】【分析】先求出不等式组的解集,再根据已知条件得出−1<a≤0即可.【详解】解:,解不等式①,得x<5,解不等式②,得x≥a,所以不等式组的解集是a≤x<5,∵关于x的不等式组的整数解共有5个,∴−1<a≤0,故答案为:−1<a≤0.【点睛】本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.4、-≤<-8【解析】【分析】先根据题目给出的不等式组解出含a的解集,再根据题目描述不等式组恰好只有5个整数解,得出-2≤<-1,解不等式得出的取值范围即可.【详解】解:,解不等式①得,解不等式②得>,∴不等式组的解为<≤3,∵关于x的不等式组有且只有五个整数解为-1,0,1.2,3,∴-2≤<-1,解得:-≤<-8.故答案为-≤<-8.【点睛】本题考查了不等式组的解法以及根据不等式组的整数解个数建立双边不等式的能力,这是一道含有参数的不等式组,掌握先解出含有a的解集后通过题目限制条件得出-2≤<-1,来求a的范围是解决此题的关键.5、2x﹣3<5【解析】【分析】x的2倍表示为:2x,小于表示为:<,由此可得不等式.【详解】解:x的2倍与3的差小于5,用不等式表示为:2x﹣3<5.故答案为:2x﹣3<5.【点睛】本题考查了由实际问题抽象一元一次不等式的知识,关键是将文字描述转化为数学语言.三、解答题1、2≤x<3,数轴见解析【解析】【分析】分别解两个不等式得到x<3和x≥2,然后根据大小小大中间找确定不等式组的解集.【详解】解:,解①得x<3,解②得x≥2,所以不等式组的解集为2≤x<3.在数轴上表示解集如下.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2、(2)、(3)是一元一次不等式【解析】【分析】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可,根据定义逐一判断即可.【详解】解:(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数,所以不是一元一次不等式,所以一元一次不等式有:(2)、(3)【点睛】本题考查的是一元一次不等式的识别,掌握一元一次不等式的定义是解本题的关键.3、(1);(2).【解析】【分析】(1)由题意去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不等式的解集;(2)由题意去分母,去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不等式的解集.【详解】解:(1),去括号得:,移项,合并同类项得:,不等式的两边同除以得:.不等式的解集是:.(2),去分母得:,去括号得:,移项,合并同类项得:,不等式的两边同除以得:.不等式的解集是:.【点睛】本题主要考查一元一次不等式的解法,熟练掌握并利用解一元一次不等式的一般步骤解答是解题的关键.4、﹣2≤x<,所有整数解的和是0.【解析】【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.【详解】解:解不等式①得,x≥﹣2,解不等式②得,x<,∴不等式组的解集是﹣2≤x<,∴原不等式组的整数解是-2,﹣1,0,1,2,∴它的所有整数解的和是﹣2﹣1+0+1+2=0.【点睛】本题主要考查了一元一次不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值,一般方法是先解不等式组,再根据解集求出特殊值.5、125【解析】【分析】设每套童装的标价是x元,根据(售价﹣进价)×销量=总利润列出不等式,解不等式可得出x的取值范围,即可得答案.【详解】设每套童装的标价是x元,∵按标价打九折售出,要获得不低于900元的利润,∴40×(x•90%﹣90)≥900,解得:x≥125,∴每套童装的标价至少125元.故答案为:125【点睛】本题考查一元一次不等式的应用,理解题意,根据(售价﹣进价)×销量=总利润列出不等式是解题关键.
相关试卷
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试练习题,共24页。试卷主要包含了下列命题中,为真命题的是,若的补角是125°,则的余角是,如图,C,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份2021学年第七章 观察、猜想与证明综合与测试课时训练,共21页。试卷主要包含了下列语句中叙述正确的有,如图,C,如图,下列命题是真命题的是等内容,欢迎下载使用。
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试复习练习题,共23页。试卷主要包含了下列说法中,真命题的个数为,下列说法等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)