【高频真题解析】2022年广东省清远市中考数学一模试题(含详解)
展开2022年广东省清远市中考数学一模试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列计算错误的是( )
A. B.
C. D.
2、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC沿AC翻折,得到△ADC,再将△ADC沿AD翻折,得到△ADE,连接BE,则tan∠EBC的值为( )
A. B. C. D.
3、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )
A.点 B.点 C.点 D.点
4、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
5、筹算是中国古代计算方法之一,宋代数学家用白色筹码代表正数,用黑色筹码代表负数,图中算式一表示的是,按照这种算法,算式二被盖住的部分是( )
A. B.
C. D.
6、根据以下程序,当输入时,输出结果为( )
A. B. C. D.
7、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )
A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地
C.甲行驶小时时货车到达地 D.甲行驶到地需要
8、下列格点三角形中,与右侧已知格点相似的是( )
A. B.
C. D.
9、同学们,我们是2022届学生,这个数字2022的相反数是( )
A.2022 B. C. D.
10、如图,小玲将一个正方形纸片剪去一个宽为的长条后,再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm.
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,在平面直角坐标系中,以原点为位似中心,将在第一象限内按相似比2:1放大后得,若点的坐标为(2,3),则点的坐标为______.
2、如图,海中有一个小岛A,一艘轮船由西向东航行,在点处测得小岛A在它的北偏东方向上,航行12海里到达点处,测得小岛A在它的北偏东方向上,那么小岛A到航线的距离等于____________海里.
3、如果在A点处观察B点的仰角为,那么在B点处观察A点的俯角为_______(用含的式子表示)
4、如图,直线,如果,,,那么线段BE的长是_____________.
5、如图,OA1B1,A1A2B2,A2A3B3,⋯是分别以A1,A2,A3,…,为直角顶点且一条直角边在x轴正半轴上的等腰直角三角形,其斜边中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…,均在反比例函数的图象上,则C1的坐标是_;y1+y2+y3+…+y2022的值为___.
三、解答题(5小题,每小题10分,共计50分)
1、综合与探究
如图,直线与轴,轴分别交于,两点,抛物线经过,两点,与轴的另一个交点为(点在点的左侧),抛物线的顶点为点.抛物线的对称轴与轴交于点.
(1)求抛物线的表达式及顶点的坐标;
(2)点M是线段上一动点,连接并延长交轴交于点,当时,求点的坐标;
(3)点是该抛物线上的一动点,设点的横坐标为,试判断是否存在这样的点,使,若存在,请直接写出的值;若不存在,请说明理由.
2、如图,在中,.
(1)用尺规完成以下基本图形:作边的垂直平分线,与边交于点D,与边交于点E;(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,连接,若,,求的周长.
3、如图,AC,BD相交于的点O,且∠ABO=∠C.求证:△AOB∽△DOC.
4、如图,在中,,D是延长线上的一点,E是上的一点.连接.如果.求证:.
5、如图,在的网格纸中,点O和点A都是格点,以O为圆心,OA为半径作圆.请仅用无刻度的直尺完成以下画图:(不写画法,保留作图痕迹.)
(1)在图①中画⊙O的一个内接正八边形ABCDEFGH;
(2)在图②中画⊙O的一个内接正六边形ABCDEF.
-参考答案-
一、单选题
1、B
【分析】
根据整式的乘除运算法则逐个判断即可.
【详解】
解:选项A:,故选项A正确,不符合题意;
选项B:,故选项B不正确,符合题意;
选项C:,故选项C正确,不符合题意;
选项D:,故选项D正确,不符合题意;
故选:B.
【点睛】
本题考查了同底数幂的乘、除运算;幂的乘方、积的乘方等运算,熟练掌握运算法则是解决本类题的关键.
2、A
【分析】
解:如图,连接,交于 过作于 先求解 设 再利用勾股定理构建方程组 ,再解方程组即可得到答案.
【详解】
解:如图,连接,交于 过作于
由对折可得:
设
解得: 或 (舍去)
故选A
【点睛】
本题考查的是轴对称的性质,勾股定理的应用,一元二次方程的解法,锐角的正切,作出适当的辅助线构建直角三角形是解本题的关键.
3、B
【分析】
结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.
【详解】
∵点和,
∴坐标原点的位置如下图:
∵藏宝地点的坐标是
∴藏宝处应为图中的:点
故选:B.
【点睛】
本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.
4、B
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
5、A
【分析】
参考算式一可得算式二表示的是,由此即可得.
【详解】
解:由题意可知,图中算式二表示的是,
所以算式二为
所以算式二被盖住的部分是选项A,
故选:A.
【点睛】
本题考查了有理数的加法,理解筹算的运算法则是解题关键.
6、C
【分析】
根据流程图所示顺序,逐框分析代入求值即可.
【详解】
解:当输入时,
代入
代入,则输出
故选C
【点睛】
本题考查了程序流程图与代数式求值,正确代入求值是解题的关键.
7、C
【分析】
根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.
【详解】
解:两地的距离为,
故A选项正确,不符合题意;
故D选项正确,不符合题意;
根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,
则
即货车返回途中与甲相遇后又经过甲到地
故B选项正确,
相遇时为第4小时,此时甲行驶了,
货车行驶了
则货车的速度为
则货车到达地所需的时间为
即第小时
故甲行驶小时时货车到达地
故C选项不正确
故选C
【点睛】
本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.
8、A
【分析】
根据题中利用方格点求出的三边长,可确定为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.
【详解】
解:的三边长分别为:,
,,
∵,
∴为直角三角形,B,C选项不符合题意,排除;
A选项中三边长度分别为:2,4,,
∴,
A选项符合题意,
D选项中三边长度分别为:,,,
∴,
故选:A.
【点睛】
题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.
9、C
【分析】
根据相反数的定义即可得出答案.
【详解】
解:2022的相反数是-2022.
故选:C.
【点睛】
本题考查了相反数,解题的关键是掌握只有符号不同的两个数互为相反数.
10、B
【分析】
设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,根据两次剪下的长条面积正好相等列方程求解.
【详解】
解:设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,
依题意得:2x=3(x-2),
解得x=6
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键.
二、填空题
1、(4,6)
【分析】
根据以原点为位似中心,将在第一象限内按相似比2:1放大后得,即可得出对应点的坐标应乘以2,即可得出点的坐标.
【详解】
解:根据以原点为位似中心,将在第一象限内按相似比2:1放大后得,
∴对应点的坐标应乘以2,
∵点的坐标为(2,3),
∴点的坐标为,即(4,6)
故答案为(4,6).
【点睛】
本题主要考查了关于原点对称的位似图形的性质,得出对应点的坐标乘以k或-k是解答本题的关键.
2、
【分析】
如图,过点A作AD⊥BC于D,根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,可得∠ABD=30°,∠ACD=60°,∠CAD=30°,根据外角性质可得∠BAC=30°,可得AC=BC,根据含30°角的直角三角形的性质可得出CD的长,利用勾股定理即可求出AD的长,可得答案.
【详解】
如图,过点A作AD⊥BC于D,
根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,BC=12,
∴∠ABD=30°,∠ACD=60°,∠CAD=30°,
∴∠BAC=∠ACD-∠ABD=30°,
∴AC=BC=12,
∴CD=AC=6,
∴AD===.
故答案为:
【点睛】
本题考查方向角的定义、三角形外角性质、含30°角的直角三角形的性质及勾股定理,三角形的一个外角,等于和它不相邻的两个内角的和;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定义是解题关键.
3、
【分析】
根据题意作出图形,然后找出相应的仰角和俯角,利用平行线的性质即可求解.
【详解】
解:如图所示:在A点处观察B点的仰角为,即,
∵,
∴,
∴在B点处观察A点的俯角为,
故答案为:.
【点睛】
题目主要考查仰角和俯角及平行线的性质,理解题意,作出相应的图形是解题关键.
4、3
【分析】
过点D作DG∥AC交CF于点G,交BE于点H,根据,可得,四边形ABHD和四边形ACGD是平行四边形,从而得到BH=AD=CG=2, ,进而得到FG=4,再由BE∥CF,得到△DEH∽△DFG,从而得到HE=1,即可求解.
【详解】
解:如图,过点D作DG∥AC交CF于点G,交BE于点H,
∵,
∴,四边形ABHD和四边形ACGD是平行四边形,
∴BH=AD=CG=2, ,
∵,
∴FG=4,
∵BE∥CF,
∴△DEH∽△DFG,
∴ ,
∴HE=1,
∴BE=BH+HE=3.
故答案为:3
【点睛】
本题主要考查了平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定,熟练掌握平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定是解题的关键.
5、
【分析】
过、、…分别作x轴的垂线,垂足分别为、、…,故是等腰直角三角形,从而求出的坐标;由点是等腰直角三角形的斜边中点,可以得到的长,然后再设未知数,表示点的坐标,确定,代入反比例函数的关系式,建立方程解出未知数,表示点的坐标,确定,……然后再求和.
【详解】
过、、…分别作x轴的垂线,垂足分别为、、…,
则,
∵是等腰直角三角形,
∴,
∴,
∴,
其斜边的中点在反比例函数,
∴,即,
∴,
∴,
设,则,此时,代入得:,
解得:,即:,
同理:,
,
……,
∴
故答案为:,.
【点睛】
本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,掌握相关知识点之间的应用是解题的关键.
三、解答题
1、(1),;(2);(3)存在,的值为4或
【分析】
(1)分别求出两点坐标代入抛物线即可求得a、c的值,将抛物线化为顶点式,即可得顶点的坐标;
(2)作轴于点,可证∽,从而可得,代入,,可求得,代入可得,从而可得点的坐标;
(3)由,可得,由两点坐标可得,所以,过点P作PQ⊥AB,分点P在x轴上方和下方两种情况即可求解.
【详解】
(1)当时,得,
∴点的坐标为(0,4),
当时,得,解得:,
∴点的坐标为(6,0),
将两点坐标代入,得
解,得
∴抛物线线的表达式为
∵
∴顶点坐标为.
(2)作轴于点,
∵,,
∴∽.
∴.
∴.
∴
当时,
∴.
∴点的坐标为.
(3)∵,,
∴,
∵点的坐标为(6,0),点的坐标为(0,4),
∴,
∴,
过点P作PQ⊥AB,
当点P在x轴上方时,
解得m=4符合题意,
当点P在x轴下方时,
解得m=8符合题意,
∴存在,的值为4或.
【点睛】
本题考查了抛物线解析式的求法,抛物线的性质,三角形相似的判定及性质,三角函数的应用,解题的关键是准确作出辅助线,利用数形结合的思想列出相应关系式.
2、
(1)见解析
(2)26
【分析】
(1)分别以点A、点B为圆心,以大于AB为半径画弧得两个交点,过两个交点画直线即可;
(2)由垂直平分线的性质可得,然后根据周长公式求解即可.
(1)
解:如图,直线即为所求的垂直平分线;
(2)
解:∵直线为边的垂直平分线,
∴.
∴.
∵,
∴的周长.
【点睛】
本题考查了尺规作图-作线段的垂直平分线,以及线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两个端点的距离相等是解答本题的关键.
3、见解析
【分析】
利用对顶角相等得到∠AOB=∠COD,再结合已知条件及相似三角形的判定定理即可求解.
【详解】
证明:∵AC,BD相交于的点O,
∴∠AOB=∠DOC,
又∵∠ABO=∠C,
∴△AOB∽△DOC.
【点睛】
本题考查了相似三角形的判定定理:若一对三角形的两组对应角相等,则这两个三角形相似,由此即可求解.
4、见解析
【分析】
由垂直可得,根据相似三角形的判定定理直接证明即可.
【详解】
证明:∵,
∴,
在和中,
∵,
∴.
【点睛】
题目主要考查相似三角形的判定定理,熟练掌握相似三角形的判定是解题关键.
5、
(1)见解析
(2)见解析
【分析】
(1)在图①中画⊙O的一个内接正八边形ABCDEFGH即可;
(2)在图②中画⊙O的一个内接正六边形ABCDEF即可.
(1)
解:如图,正八边形ABCDEFGH即为所求:
(2)
解:如图,正六边形ABCDEF即为所求:
【点睛】
本题考查了作图-应用与设计作图、正多边形和圆,解决本题的关键是准确画图.
【高频真题解析】2022年广东省清远市中考数学历年真题汇总 卷(Ⅲ)(含答案解析): 这是一份【高频真题解析】2022年广东省清远市中考数学历年真题汇总 卷(Ⅲ)(含答案解析),共26页。试卷主要包含了和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。
【历年真题】2022年广东省清远市中考数学真题汇总 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年广东省清远市中考数学真题汇总 卷(Ⅱ)(含详解),共24页。试卷主要包含了如图所示,,,,,则等于,下列计算错误的是,的值.等内容,欢迎下载使用。
【真题汇总卷】2022年广东省清远市中考数学一模试题(含答案详解): 这是一份【真题汇总卷】2022年广东省清远市中考数学一模试题(含答案详解),共29页。试卷主要包含了和按如图所示的位置摆放,顶点B,若,则代数式的值为,有理数等内容,欢迎下载使用。