【历年真题】2022年广东省清远市中考数学三年高频真题汇总 卷(Ⅰ)(含答案解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、等腰三角形的一个内角是,则它的一个底角的度数是( )
A.B.
C.或D.或
2、下列几何体中,俯视图为三角形的是( )
A.B.
C.D.
3、如图,表中给出的是某月的月历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是( )
A.78B.70C.84D.105
4、的值( ).
A.B.2022C.D.-2022
5、若点P位于平面直角坐标系第四象限,且点P到x轴的距离是1,到y轴的距离是2,则点P的坐标为( )
A.B.C.D.
6、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).
A.B.C.或D.
7、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
8、如图,表示绝对值相等的数的两个点是( )
A.点C与点BB.点C与点DC.点A与点BD.点A与点D
9、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为( )
A.B.C.D.
10、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,邮局在学校(______)偏(______)(______)°方向上,距离学校是(______)米.
2、如图,在边长1正网格中,A、B、C都在格点上,AB与CD相交于点D,则sin ∠ADC=_____.
3、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.
4、某商品进价为26元,当每件售价为50元时,每天能售出40件,经市场调查发现每件售价每降低1元,则每天可多售出2件,当店里每天的利润要达到最大时,店主应把该商品每件售价降低______元.
5、如图,把△ABC纸片沿DE折叠,使点A落在图中的A'处,若∠A=29°,∠BDA'=90°,则∠A'EC的大小为______.
三、解答题(5小题,每小题10分,共计50分)
1、(数学阅读)
图1是由若干个小圆圈推成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共推了n层.
将图1倒置后与原图1排成图2的形状,这样图2中每一行的圆圈数都是.
我们可以利用“倒序相加法”算出图1中所有圆圈的个数为:.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(问题解决)
(1)按照图1的规则摆放到第12层时,求共用了多少个圆圈;
(2)按照图1的规则摆放到第19层,每个圆圈都按图3的方式填上一串连续的正整数:1,2,3,4,……,则第19层从左边数第二个圆圈中的数字是______.
2、已知抛物线y=﹣x2+x.
(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;
(2)已知该抛物线经过A(3n+4,y1),B(2n﹣1,y2)两点.
①若n<﹣5,判断y1与y2的大小关系并说明理由;
②若A,B两点在抛物线的对称轴两侧,且y1>y2,直接写出n的取值范围.
3、如图在中,,过点A作的垂线.垂足为D,E为线段上一动点(不与点C,点D重合),连接.以点A为中心,将线段逆时针旋转得到线段,连接,与线段交于点G.
(1)求证:;
(2)用等式表示线段与的数量关系,并证明.
4、阅读材料:在合并同类项中,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛.
(1)把看成一个整体,合并的结果是 .
(2)已知,求的值:
(3)已知,,,求的值.
5、如图,某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:
①在河流的一条岸边点,选对岸正对的一棵树;
②沿河岸直走有一树,继续前行到达处;
③从处沿河岸垂直的方向行走,当到达树正好被树遮挡住的处时停止行走;
④测得的长为米.
根据他们的做法,回答下列问题:
(1)河的宽度是多少米?
(2)请你证明他们做法的正确性.
-参考答案-
一、单选题
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、A
【分析】
由题意知, 100°的内角为等腰三角形的顶角,进而可求底角.
【详解】
解:∵在一个内角是 100°的等腰三角形中,该内角必为顶角
∴底角的度数为
故选A.
【点睛】
本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形.
2、C
【分析】
依题意,对各个图形的三视图进行分析,即可;
【详解】
由题知,对于A选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;
对于B选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;
对于C选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;
对于D选项:主视图:正方形;侧视图:正方形;俯视图:正方形;
故选:C
【点睛】
本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;
3、A
【分析】
设“U”型框中的最下排正中间的数为x,则其它6个数分别为x-15,x-8,x-1,x+1,x-6,x-13,表示出这7个数之和,然后分别列出方程解答即可.
【详解】
解:设“U”型框中的最下排正中间的数为x,则其他6个数分别为x-15,x-8,x-1,x+1,x-6,x-13,
这7个数之和为:x-15+x-8+x-1+x+1+x-6+x-13=7x-42.
由题意得:
A、7x-42=78,解得x=,不能求出这7个数,符合题意;
B、7x-42=70,解得x=16,能求出这7个数,不符合题意;
C、7x-42=84,解得x=18,能求出这7个数,不符合题意;
D、7x-42=105,解得x=21,能求出这7个数,不符合题意.
故选:A.
【点睛】
本题考查一元一次方程的实际运用,掌握“U”型框中的7个数的数字的排列规律是解决问题的关键.
4、B
【分析】
数轴上表示数的点与原点的距离是数的绝对值,根据绝对值的含义可得答案.
【详解】
解:
故选B
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查的是绝对值的含义,掌握“求解一个数的绝对值”是解本题的关键.
5、D
【分析】
第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.
【详解】
解:由题意知点的横坐标为2,纵坐标为
∴点的坐标为
故选D.
【点睛】
本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.
6、A
【分析】
先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.
【详解】
解:∵当x1=1、x2=3时,y1=y2,
∴点A与点B为抛物线上的对称点,
∴,
∴b=-4;
∵对于任意实数x1、x2都有y1+y2≥2,
∴二次函数y=x2-4x+n的最小值大于或等于1,
即,
∴c≥5.
故选:A.
【点睛】
本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.
7、A
【分析】
看哪个几何体的三视图中有长方形,圆,及三角形即可.
【详解】
解:、三视图分别为正方形,三角形,圆,故选项符合题意;
、三视图分别为三角形,三角形,圆及圆心,故选项不符合题意;
、三视图分别为正方形,正方形,正方形,故选项不符合题意;
、三视图分别为三角形,三角形,矩形及对角线,故选项不符合题意;
故选:A.
【点睛】
本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.
8、D
【分析】
根据数轴可以把A、B、C、D四个点表示的数写出来,然后根据写出的数即可得到那两个数的绝对值相等,从而可以得到问题的答案.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:由数轴可得,点A、B、C、D在数轴上对应的数依次是:−3,2,-1,3,
则|−3|=|3|,
故点A与点D表示的数的绝对值相等,
故选:D.
【点睛】
本题考查数轴,解题的关键是利用数形结合的思想找出所求问题需要的条件.
9、D
【分析】
如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.
【详解】
解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D
∵
∴
在和中
∴
∴
∴B点坐标为
故选D.
【点睛】
本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.
10、A
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:40210000
故选:A
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
二、填空题
1、北
东 45 1000
【分析】
图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.
【详解】
解:邮局在学校北偏东45°的方向上,距离学校 1000米.
故答案为:北,东,45,1000.
【点睛】
此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.
2、255##
【分析】
将∠ADC转化成其他相等的角,在直角三角形中,利用正弦函数值的定义求解即可.
【详解】
解:延长CD交正方形的另一个顶点为E,连接BE,如下图所示:
由题意可知:∠BED=90°,∠ADC=∠BDE,
根据正方形小格的边长及勾股定理可得:BE=22,BD=10,
∴在中,,
,
故答案为:255.
【点睛】
本题主要是考查了勾股定理和求解正弦值,熟练地找到所求角在的直角三角形,利用正弦函数值的定义进行求解,这是解决该题的关键.
3、(0,-5)
【分析】
在Rt△ODC中,利用勾股定理求出OC即可解决问题.
【详解】
解:∵A(12,13),
∴OD=12,AD=13,
∵四边形ABCD是菱形,
∴CD=AD=13,
在Rt△ODC中,OC=CD2-OD2=5,
∴C(0,-5).
故答案为:(0,-5)
【点睛】
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
4、2
【分析】
设每件商品售价降低x元,则每天的利润为:W=50-x-26×40+2x,0≤x≤24然后求解计算最大值即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:设每件商品售价降低x元
则每天的利润为:W=50-x-26×40+2x,0≤x≤24
W=24-x×40+2x
=-2x2+8x+960
=-2x-22+968
∵-2x-22≤0
∴当x=2时,W最大为968元
故答案为2.
【点睛】
本题考查了一元二次函数的应用.解题的关键在于确定函数解析式.
5、32°
【分析】
利用折叠性质得∠ADE=∠A'DE=45°,∠AED=∠A'ED,再根据三角形外角性质得∠CED=74°,利用邻补角得到∠AED=106°,则∠A'ED=106°,然后利用∠A'EC=∠A'ED-∠CED进行计算即可.
【详解】
解:∵∠BDA'=90°,
∴∠ADA'=90°,
∵△ABC纸片沿DE折叠,使点A落在图中的A'处,
∴∠ADE=∠A'DE=45°,∠AED=∠A'ED,
∵∠CED=∠A+∠ADE=29°+45°=74°,
∴∠AED=106°,
∴∠A'ED=106°,
∴∠A'EC=∠A'ED-∠CED=106°-74°=32°.
故答案为:32°.
【点睛】
本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各个知识点是解题关键.
三、解答题
1、
(1)78个圆圈
(2)173
【分析】
(1)将代入公式求解即可得;
(2)先计算当时的值,然后根据题意,第19层从左边数第二个圆圈中的数字即可得出.
(1)
解:图1中所有圆圈的个数为:,
当时,
,
答:摆放到第12层时,求共用了78个圆圈;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
先计算当时,
,
第19层从左边数第二个圆圈中的数字为:,
故答案为:173.
【点睛】
题目主要考查有理数的加法及找规律求代数式的值,理解题意,运用代数式求值是解题关键.
2、
(1)直线x=1,(0,0)
(2)①y1<y2,理由见解析;②﹣1<n<﹣
【分析】
(1)由对称轴公式即可求得抛物线的对称轴,令x=0,求得函数值,即可求得抛物线与y轴的交点坐标;
(2)①由n<﹣5,可得点A,点B在对称轴直线x=1的左侧,由二次函数的性质可求解;
(3)分两种情况讨论,列出不等式组可求解.
(1)
∵y=﹣x2+x,
∴对称轴为直线x=﹣=1,
令x=0,则y=0,
∴抛物线与y轴的交点坐标为(0,0);
(2)
xA﹣xB=(3n+4)﹣(2n﹣1)=n+5,xA﹣1=(3n+4)﹣1=3n+3=3(n+1),xB﹣1=(2n﹣1)﹣1=2n﹣2=2(n﹣1).
①当n<﹣5时,xA﹣1<0,xB﹣1<0,xA﹣xB<0.
∴A,B两点都在抛物线的对称轴x=1的左侧,且xA<xB,
∵抛物线y=﹣x2+x开口向下,
∴在抛物线的对称轴x=1的左侧,y随x的增大而增大.
∴y1<y2;
②若点A在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,
由题意可得,
∴不等式组无解,
若点B在对称轴直线x=1的左侧,点A在对称轴直线x=1的右侧时,
由题意可得:,
∴﹣1<n<﹣,
综上所述:﹣1<n<﹣.
【点睛】
本题考查了抛物线与y轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.
3、
(1)见解析
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)线段与的数量关系是.证明见解析
【分析】
(1)由题意知,故.
(2)过点A作的垂线,可证得,由全等三角形性质知,由相似三角形的性质即可推导得.
(1)
∵,
∴,
∵,
∴,
∴
(2)
连接.
在和中,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴
∵,
∴
【点睛】
本题考查了全等三角形的判定及性质,等腰三角形的性质,由相似的性质得另外两边与中位线的交点为中点.
4、
(1)
(2)
(3)
【分析】
(1)将系数相加减即可;
(2)将原式变形后整体代入,即可求出答案;
(3)将原式变形后,再整体代入计算.
(1)
解:= =,
故答案为:;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
解:∵
∴原式;
(3)
解:∵,,,
∴原式
.
【点睛】
此题考查了整式的加减法,整式的化简求值,正确掌握整式的加减法计算法则及整体代入计算方法是解题的关键.
5、
(1)5
(2)证明见解析
【分析】
(1)由数学兴趣小组的做法可知河宽为5米.
(2)由角边角即可证得和全等,再由对应边相等可知AB=DE.
(1)
由数学兴趣小组的做法可知,AB=DE,故河宽为5米
(2)
由题意知,BC=CD=20米
又∵光沿直线传播
∴∠ACB=∠ECD
又∵在和中有
∴
∴AB=DE
【点睛】
本题考查了全等三角形的判定及性质,由数学兴趣小组的第三步:从处沿河岸垂直的方向行走,当到达树正好被树遮挡住的处时停止行走,得出∠ACB=∠ECD是解题的关键.
【历年真题】贵州省铜仁市中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析): 这是一份【历年真题】贵州省铜仁市中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析),共26页。试卷主要包含了下列方程变形不正确的是等内容,欢迎下载使用。
【历年真题】贵州省中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解): 这是一份【历年真题】贵州省中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解),共29页。试卷主要包含了下列各式中,不是代数式的是,如图,下列条件中不能判定的是,如图,E,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。
【历年真题】中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析): 这是一份【历年真题】中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析),共25页。试卷主要包含了的相反数是等内容,欢迎下载使用。