真题汇总:2022年福建省晋江市中考数学模拟定向训练 B卷(含答案及详解)
展开2022年福建省晋江市中考数学模拟定向训练 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )
A. B. C. D.
2、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( )
A. B. C. D.
3、若单项式与是同类项,则的值是( )
A.6 B.8 C.9 D.12
4、如图,中,,,,,平分,如果点,分别为,上的动点,那么的最小值是( )
A.6 B.8 C.10 D.4.8
5、若,则下列分式化简正确的是( )
A. B. C. D.
6、下列二次根式的运算正确的是( )
A. B.
C. D.
7、下列命题错误的是( )
A.所有的实数都可用数轴上的点表示 B.两点之间,线段最短
C.无理数包括正无理数、0、负有理数 D.等角的补角相等
8、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )
A.60 B.30 C.600 D.300
9、若关于x,y的方程是二元一次方程,则m的值为( )
A.﹣1 B.0 C.1 D.2
10、0.1234567891011……是一个无理数,其小数部分是由1开始依次写下递增的正整数得到的,则该无理数小数点右边的第2022位数字是( )
A.0 B.1 C.2 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为了响应全民阅读的号召,某校图书馆利用节假日面向社会开放.据统计,第一个月进馆560人次,进馆人次逐月增加,第三个月进馆830人次.设该校图书馆第二个月、第三个月进馆人次的平均增长率为x,则可列方程为______.
2、桌子上放有6枚正面朝上的硬币,每次翻转其中的4枚,至少翻转_________次能使所有硬币都反面朝上.
3、若则______.
4、一组数据8,2,6,10,5的极差是_________.
5、某商场在“元旦”期间举行促销活动,顾客根据其购买商品标价的一次性总额,可以获得相应的优惠方法:①如不超过800元,则不予优惠;②如超过800元,但不超过1000元,则按购物总额给予8折优惠;③如超过1000元,则其中1000元给予8折优惠,超过1000元的部分给予7折优惠.促销期间,小明和他妈妈分别看中一件商品,若各自单独付款,则应分别付款720元和1150元;若合并付款,则他们总共只需付款______元.
三、解答题(5小题,每小题10分,共计50分)
1、芳芳家有一种伸缩挂衣架(如图1),伸缩挂衣架中有3个菱形组成,每个菱形边长为10cm.伸缩挂衣架打开时,每个菱形的锐角度数为60°(如图2);伸缩挂衣架收拢时,每个菱形的锐角度数从60°缩小为10°(如图3).问:伸缩挂衣架从打开到收拢共缩短了多少cm?(结果精确到1cm,参考数据:,,,).
2、姐姐在认真学习的时候,调皮的二宝把姐姐的一道求值题弄污损了,姐姐隐约辨识:化简,其中.系数“”看不清楚了.
(1)如果姐姐把“”中的数值看成2,求上述代数式的值;
(2)若无论m取任意的一个数,这个代数式的值都是,请通过计算帮助姐姐确定“”中的数值.
3、平面上有三个点A,B,O.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC.
(1)依题意补全图形(借助量角器、刻度尺画图);
(2)写出的依据:
(3)比较线段OC与AC的长短并说明理由:
(4)直接写出∠AOB的度数.
4、在平面直角坐标系中,对于点,,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.
例如,如图已知点,,点关于点的对称平移点为.
(1)已知点,,
①点关于点的对称平移点为________(直接写出答案).
②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)
(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以,,为顶点的三角形围成的面积为1,求的值.
5、如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点D是边AC上的动点,以CD为边在△ABC外作正方形CDEF,分别联结AE、BE,BE与AC交于点G
(1)当AE⊥BE时,求正方形CDEF的面积;
(2)延长ED交AB于点H,如果△BEH和△ABG相似,求sin∠ABE的值;
(3)当AG=AE时,求CD的长.
-参考答案-
一、单选题
1、B
【分析】
设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案.
【详解】
解:设该分派站有x名快递员,则可列方程为:
7x+6=8x-1.
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.
2、D
【分析】
旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解
【详解】
解:旋转阴影部分,如图,
∴该点取自阴影部分的概率是
故选:D
【点睛】
本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
3、C
【分析】
根据同类项的定义可得,代入即可求出mn的值.
【详解】
解:∵与是同类项,
∴,
解得:m=3,
∴.
故选:C.
【点睛】
此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.
4、D
【分析】
如图所示:过点作于点,交于点,过点作于点,则,此时最小,再利用等面积法求解最小值即可.
【详解】
解:如图所示:
过点作于点,交于点,
过点作于点,
平分,
,
.
在中,,,,,,
,
,
.
即的最小值是4.8,
故选:D.
【点睛】
本题考查的是垂线段最短,角平分线的性质定理的应用,等面积法的应用,确定取最小值时点的位置是解本题的关键.
5、C
【分析】
由,令,再逐一通过计算判断各选项,从而可得答案.
【详解】
解:当,时,
,,故A不符合题意;
,故B不符合题意;
而 故C符合题意;
.故D不符合题意
故选:C.
【点睛】
本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.
6、B
【分析】
根据二次根式的性质及运算逐项进行判断即可.
【详解】
A、,故运算错误;
B、,故运算正确;
C、,故运算错误;
D、,故运算错误.
故选:B
【点睛】
本题考查了二次根式的性质、二次根式的运算,掌握二次根式的性质及运算法则是关键.
7、C
【分析】
根据实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,逐项判断即可求解.
【详解】
解:A、所有的实数都可用数轴上的点表示,该命题正确,故本选项不符合题意;
B、两点之间,线段最短,该命题正确,故本选项不符合题意;
C、0不是无理数,该命题错误,故本选项符合题意;
D、等角的补角相等,该命题正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,命题的真假判断,熟练掌握实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质是解题的关键.
8、B
【分析】
根据样本的百分比为,用1000乘以3%即可求得答案.
【详解】
解:∵随机抽取100件进行检测,检测出次品3件,
∴估计1000件产品中次品件数是
故选B
【点睛】
本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.
9、C
【分析】
根据二元一次方程的定义得出且,再求出答案即可.
【详解】
解:∵关于x,y的方程是二元一次方程,
∴且,
解得:m=1,
故选C.
【点睛】
本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.
10、A
【分析】
一位数字9个,两位数字90个,三位数字900个,由此算出2022处于三位数字的第几个数字求得答案即可.
【详解】
∵共有9个1位数,90个2位数,900个3位数,
∴2022-9-90×2=1833,
∴1833÷3=611,
∵此611是继99后的第611个数,
∴此数是710,第三位是0,
故从左往右数第2022位上的数字为0,
故选:A.
【点睛】
此题主要考查了规律型:数字的变化类,根据已知得出变化规律是解题关键.
二、填空题
1、
【分析】
利用第三个月进馆人次第一个月进馆人次平均增长率),即可得出关于的一元二次方程,此题得解.
【详解】
解:依题意得:.
故答案为:.
【点睛】
本题考查了由实际问题抽象出一元二次方程,解题的关键是找准等量关系,正确列出一元二次方程.
2、3
【分析】
用“”表示正面朝上,用“”表示正面朝下,找出最少翻转次数能使杯口全部朝下的情况即可得答案
【详解】
用“”表示正面朝上,用“”表示正面朝下,
开始时
第一次
第二次
第三次
至少翻转3次能使所有硬币都反面朝上.
故答案为:3
【点睛】
本题考查了正负数的应用,根据朝上和朝下的两种状态对应正负号,尝试最少的次数满足题意是解题的关键.
3、
【分析】
用含b的式子表示a,再把合分比式中a换成含b的式子约分即可.
【详解】
解:∵,
∴,
∴.
故答案为.
【点睛】
本题考查合分比性质问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题.
4、8
【分析】
根据“极差”的定义,求出最大值与最小值的差即可.
【详解】
解:最大值与最小值的差为极差,
所以极差为10-2=8,
故答案为:8.
【点睛】
本题考查了极差,掌握一组数据中最大值与最小值的差即为极差是正确判断的前提.
5、1654或1780或1654
【分析】
根据题意知付款720元时,其实际标价为为720或900元;付款1150元,实际标价为1500元,再分别计算求出一次购买标价2220元或2400元的商品应付款即可.
【详解】
解:由题意知付款720元,实际标价为720或720×=900(元),
付款1150元,实际标价肯定超过1000元,
设实际标价为x,
依题意得:(x-1000)×0.7+1000×0.8=1150,
解得:x=1500(元),
如果一次购买标价720+1500=2220(元)的商品应付款:
1000×0.8+(2220-1000)×0.7=1654(元).
如果一次购买标价900+1500=2400(元)的商品应付款:
1000×0.8+(2400-1000)×0.7=1780(元).
故答案是:1654或1780.
【点睛】
本题考查了一元一次方程的应用,通过优惠政策利用解方程求出小明和他妈妈分别看中商品的售价是解题的关键.
三、解答题
1、伸缩衣架从打开到收拢共缩短了25cm
【分析】
连接AC、BD,交于点O,然后根据菱形的性质及三角函数可求得BD的长,同理可求的长,进而问题可求解.
【详解】
解:连接AC、BD,交于点O,如图所示:
∵四边形ABCD是菱形,
∴,BO=OD,,
∵,
∴,
∴打开时:,
连接,,交于点,如图所示:
同理可得,
∴收拢时:
∴缩短了:
答:伸缩衣架从打开到收拢共缩短了25cm.
【点睛】
本题主要考查菱形的性质及解直角三角形,熟练掌握菱形的性质及解直角三角形是解题的关键.
2、
(1)-4
(2)4
【分析】
(1)化简并求值即可;
(2)设中的数值为x,然后化简原式,根据题意,含m的项的系数为0即可求得x的值.
(1)
原式
.
当时,原式;
(2)
设中的数值为x,
则原式
.
∵无论m取任意的一个数,这个代数式的值都是,
∴.
∴.
即“”中的数是4.
【点睛】
本题考查了整式的加减运算及求代数式的值,整式加减的实质是去括号、合并同类项,注意去括号时,当括号前是“-”时,去掉括号及括号前的“-”后,括号里的各项都要变号.
3、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°
【分析】
(1)根据题意画出图形,即可求解;
(2)根据三角形的两边之和大于第三边,即可求解;
(3)利用刻度尺测量得: ,即可求解;
(4)用180°减去80°,再减去30°,即可求解.
【详解】
解:(1)根据题意画出图形,如图所示:
(2)在△AOB中,因为三角形的两边之和大于第三边,
所以;
(3) ,理由如下:利用刻度尺测量得: ,
AC=2cm,
∴;
(4)根据题意得: .
【点睛】
本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.
4、
(1)①(6,4);②(3,-2)
(2)的值为
【分析】
(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;
(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.
(1)
解:①如图1中,点关于点的对称平移点为.
故答案为:.
②若点为点关于点的对称平移点,则点的坐标为.
故答案为:;
(2)
解:如图2中,当时,四边形是梯形,
,,,
,
或(舍弃),
当时,同法可得,
综上所述,的值为.
【点睛】
本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.
5、
(1)
(2)
(3)
【分析】
(1)证明△ADE≌△BFE(ASA),推出AD=BF,构建方程求出CD即可.
(2)过点A作AM⊥BE于M,想办法求出AB,AM即可解决问题.
(3)如图3中,延长CA到N,使得AN=AG.设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,在Rt△ADE中,利用勾股定理求出x即可解决问题.
(1)
如图1中,
∵四边形ABCD是正方形,
∴CD=DE=EF=CF,∠CDE=∠DEF=∠F=90°,
∵AE⊥BE,
∴∠AEB=∠DEF=90°,
∴∠AED=∠BEF,
∵∠ADE=∠F=90°,DE=FE,
∴△ADE≌△BFE(ASA),
∴AD=BF,
∴AD=5+CF=5+CD,
∵AC=CD+AD=12,
∴CD+5+CD=12,
∴CD=,
∴正方形CDEF的面积为.
(2)
如图2中,
∵∠ABG=∠EBH,
∴当∠BAG=∠BEH=∠CBG时,△ABG∽△EBH,
∵∠BCG=∠ACB,∠CBG=∠BAG,
∴△CBG∽△CAB,
∴=CG•CA,
∴CG=,
∴BG===,
∴AG=AC﹣CG=,
过点A作AM⊥BE于M,
∵∠BCG=∠AMG=90°,∠CGB=∠AGM,
∴∠GAM=∠CBG,
∴cos∠GAM=cos∠CBG=,
∴AM=,
∵AB==13,
∴sin∠ABM=.
(3)
如图3中,延长CA到N,使得AN=AG.
∵AE=AG=AN,
∴∠GEN=90°,
由(1)可知,△NDE≌△BFR,
∴ND=BF,
设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,
∴AN=AE=5+x﹣(12﹣x)=2x﹣7,
在Rt△ADE中,
∵,
∴,
∴x=或(舍弃),
∴CD=.
【点睛】
本题考查了正方形的性质,勾股定理,三角形的全等,三角形相似的性质和判定,一元二次方程的解法,三角函数的正弦值,熟练掌握勾股定理,准确解一元二次方程,正弦值是解题的关键.
【真题汇总卷】2022年浙江省台州市中考数学模拟定向训练 B卷(含答案详解): 这是一份【真题汇总卷】2022年浙江省台州市中考数学模拟定向训练 B卷(含答案详解),共24页。试卷主要包含了下列计算正确的是,如图所示,该几何体的俯视图是,多项式去括号,得,-6的倒数是等内容,欢迎下载使用。
【真题汇总卷】2022年唐山滦州市中考数学模拟定向训练 B卷(含详解): 这是一份【真题汇总卷】2022年唐山滦州市中考数学模拟定向训练 B卷(含详解),共23页。试卷主要包含了把 写成省略括号后的算式为,下列计算等内容,欢迎下载使用。
【真题汇总卷】2022年内蒙古赤峰市中考数学模拟定向训练 B卷(含答案及详解): 这是一份【真题汇总卷】2022年内蒙古赤峰市中考数学模拟定向训练 B卷(含答案及详解),共22页。试卷主要包含了下列二次根式的运算正确的是,若,则值为,已知,则代数式的值是,下列命题错误的是等内容,欢迎下载使用。

