【历年真题】:2022年湖南省隆回县中考数学模拟测评 卷(Ⅰ)(含答案详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在2,1,0,-1这四个数中,比0小的数是( )
A.2B.0C.1D.-1
2、工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使CM=CN,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC,其依据是( )
A.SSSB.SASC.ASAD.AAS
3、如图,AB是的直径,CD是的弦,且,,,则图中阴影部分的面积为( )
A.B.C.D.
4、如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=( )
A.25°B.27°C.30°D.45°
5、的相反数是( )
A.B.C.D.3
6、下列计算正确的是( )
A.B.C.D.
7、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )
A.5或18.5B.5.5或7C.5或7D.5.5或18.5
8、如图,各图形由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,……,按此规律,第6个图中黑点的个数是( )
A.47B.62C.79D.98
9、如图,,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.EF=BCB.C.∠B=∠ED.AB=DE
10、若关于x,y的方程是二元一次方程,则m的值为( )
A.﹣1B.0C.1D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若a和b互为相反数,c和d互为倒数,则的值是________________.
2、近似数精确到____________位.
3、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.
4、如图,在中,和的平分线相交于点,过点作交于点,交于点,过点作于,下列四个结论:①;②;③点到各边的距离相等;④设,,则.其中正确的结论有________(填写序号).
5、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.
三、解答题(5小题,每小题10分,共计50分)
1、先化简再求值:其中,
2、已知抛物线y=x2+bx+c与y轴交于点C(0,2),它的顶点为M,对称轴是直线x=﹣1.
(1)求此抛物线的表达式及点M的坐标;
(2)将上述抛物线向下平移m(m>0)个单位,所得新抛物线经过原点O,设新抛物线的顶点为N,请判断△MON的形状,并说明理由.
3、计算:.
4、定义一种新运算“”,规定:等式右边的运算就是加、减、乘、除四则运算,例如:,.
(1)求的值;
(2)若,求x的值.
5、如图1,对于的顶点P及其对边MN上的一点Q,给出如下定义:以P为圆心,PQ长为半径的圆与直线MN的公共点都在线段MN上,则称点Q为关于点P的内联点.
在平面直角坐标系xOy中:
(1)如图2,已知点,点B在直线上.
①若点,点,则在点O,C,A中,点______是关于点B的内联点;
②若关于点B的内联点存在,求点B横坐标m的取值范围;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)已知点,点,将点D绕原点O旋转得到点F,若关于点E的内联点存在,直接写出点F横坐标n的取值范围.
-参考答案-
一、单选题
1、D
【分析】
根据正数大于零,零大于负数,即可求解.
【详解】
解:在2,1,0,-1这四个数中,比0小的数是-1
故选:D
【点睛】
本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.
2、A
【分析】
利用边边边,可得△NOC≌△MOC,即可求解.
【详解】
解:∵OM=ON,CM=CN, ,
∴△NOC≌△MOC(SSS).
故选:A
【点睛】
本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.
3、C
【分析】
如图,连接OC,OD,可知是等边三角形,,,,计算求解即可.
【详解】
解:如图连接OC,OD
∵
∴是等边三角形
∴
由题意知,
故选C.
【点睛】
本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.
4、B
【分析】
根据BE⊥AC,AD=CD,得到AB=BC,∠ABC,证明△ABD≌△CED,求出∠E=∠ABE=27°.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:∵BE⊥AC,AD=CD,
∴BE是AC的垂直平分线,
∴AB=BC,
∴∠ABC=27°,
∵AD=CD,BD=ED,∠ADB=∠CDE,
∴△ABD≌△CED,
∴∠E=∠ABE=27°,
故选:B.
【点睛】
此题考查了线段垂直平分线的性质,全等三角形的判定及性质,熟记线段垂直平分线的性质是解题的关键.
5、D
【分析】
根据只有符号不同的两个数是互为相反数解答即可.
【详解】
解:的相反数是3,
故选D.
【点睛】
本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
6、D
【分析】
先确定各项是否为同类项(所含字母相同,相同字母指数也相同的项),如为同类项根据合并同类项法则(只把系数相加减,字母和字母的指数不变)合并同类项即可.
【详解】
A. ,故A选项错误;
B. ,不是同类项,不能合并,故错误;
C. ,故C选项错误;
D. ,故D选项正确.
故选:D.
【点睛】
本题考查合并同类项,合并同类项时先确定是否为同类项,如是同类项再根据字母和字母的指数不变,系数相加合并同类项.
7、C
【分析】
根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.
【详解】
解:点C在线段AB上时,如图:
∵AB=7,AC∶BC=4∶3,
∴AC=4,BC=3,
∵点D为线段AC的中点,
∴AD=DC=2,
∴BD=DC+BC=5;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
点C在线段AB的延长线上时,
∵AB=7,AC∶BC=4∶3,
设BC=3x,则AC=4x,
∴AC-BC=AB,即4x-3x=7,
解得x=7,
∴BC=21,则AC=28,
∵点D为线段AC的中点,
∴AD=DC=14,
∴BD=AD-AB=7;
综上,线段BD的长为5或7.
故选:C.
【点睛】
本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.
8、A
【分析】
根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,……,由此发现,第 个图中黑点的个数是 ,即可求解.
【详解】
解:根据题意得:第1个图中黑点的个数是 ,
第2个图中黑点的个数是 ,
第3个图中黑点的个数是,
第4个图中黑点的个数是 ,
……,
由此发现,第 个图中黑点的个数是 ,
∴第6个图中黑点的个数是 .
故选:A
【点睛】
本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.
9、A
【分析】
利用先证明结合已有的条件 再对每个选项添加的条件逐一分析,即可得到答案.
【详解】
解:如图,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
所以添加EF=BC,不能判定△ABC≌△DEF,故A符合题意;
延长 交于 添加,
△ABC≌△DEF,故B,C不符合题意;
添加AB=DE,能判定△ABC≌△DEF,故D不符合题意;
故选A
【点睛】
本题考查的是添加一个条件判定两个三角形全等,熟练的掌握“利用判定三角形全等”是解本题的关键.
10、C
【分析】
根据二元一次方程的定义得出且,再求出答案即可.
【详解】
解:∵关于x,y的方程是二元一次方程,
∴且,
解得:m=1,
故选C.
【点睛】
本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.
二、填空题
1、-2020
【分析】
利用相反数,倒数意义求出各自的值,代入原式计算即可得到结果.
【详解】
解:∵a,b互为相反数,c,d互为倒数,
∴a+b=0,cd=1,
则.
故答案为:-2020.
【点睛】
本题考查了代数式的求值,有理数的混合运算,相反数,倒数,熟练掌握各自的性质是解本题的关键.
2、百
【分析】
一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.
【详解】
解:∵104是1万,6位万位,0为千位,5为百位,
∴近似数6.05×104精确到百位;
故答案为百.
【点睛】
此题考查近似数与有效数字,解题关键在于掌握从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.
3、5或3
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
分点P在圆内或圆外进行讨论.
【详解】
解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;
②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;
综上所述:⊙O的半径长为 5cm或3cm.
故答案为:5或3.
【点睛】
本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
4、①③④
【分析】
由角平分线的性质,平行的性质,三角形的性质等对结论进行判定即可.
【详解】
解:在中,和的平分线相交于点,
,,,
,
;故②错误;
在中,和的平分线相交于点,
,,
,
,,
,,
,,
,
故①正确;
过点作于,作于,连接,
在中,和的平分线相交于点,
,
;故④正确;
在中,和的平分线相交于点,
点到各边的距离相等,故③正确.
故答案为:①③④.
【点睛】
本题考查了三角形内的有关角平分线的综合问题,一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线,角的平分线上的点到角的两边的距离相等.也就是说,一个点只要在角的平分线上,那么这个点到该角的两边的距离相等.
5、
【分析】
第四象限点的特征是,所以当横坐标只能为2或3,纵坐标只能是或,画出列表图或树状· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
图,算出满足条件的情况,进一步求得概率即可.
【详解】
如下图:
∵第四象限点的坐标特征是,
∴满足条件的点分别是: ,共4种情况,
又∵从列表图知,共有12种等可能性结果,
∴点在第四象限的概率为.
故答案为:
【点睛】
本题主要考察概率的求解,要熟悉树状图或列表图的要点是解题关键.
三、解答题
1、,
【分析】
先根据去括号和合并同类项法则化简,再把,代入计算即可.
【详解】
解:,
=
当时,原式=.
【点睛】
本题考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则及有理数的混合运算.
2、
(1)y=x2+2x+2,顶点M(﹣1,1)
(2)等腰直角三角形;理由见解析
【分析】
(1)根据待定系数法即可求得抛物线的解析式,然后化成顶点式求得顶点M的坐标;
(2)设新抛物线的解析式为y=(x+1)2+1-m,把(0,0)代入求得m的值,即可根据平移的原则得到顶点N的坐标,根据勾股定理求得OM2=ON2=2,MN2=4,即可得到结论.
(1)
解:∵抛物线y=x2+bx+c与y轴交于点C(0,2),对称轴是直线x=﹣1.
∴,解得,
∴抛物线的表达式为y=x2+2x+2,
∵y=x2+2x+2=(x+1)2+1,
∴顶点M(﹣1,1);
(2)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:∵抛物线向下平移m(m>0)个单位,所得新抛物线经过原点O,
∴设新抛物线的解析式为y=(x+1)2+1-m,
把(0,0)代入得,0=1+1-m,
∴m=2,
∴顶点N为(-1,-1),
∵M(-1,1),
∴OM2=(-1)2+12=2,ON2=(-1)2+(-1)2=2,MN2=22=4,
∴OM=ON,OM2+ON2=MN2,
∴△MON是等腰直角三角形.
【点睛】
本题考查了待定系数法求二次函数的解析式,二次函数的图象与几何变换,二次函数图象上点的坐标特征,求得顶点M、和顶点N的坐标是解题的关键.
3、
【分析】
根据二次根式的乘法,以及二次根式的性质,分母有理化进行计算即可.
【详解】
解:
【点睛】
本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.
4、
(1)-43
(2)3
【分析】
(1)根据定义变形,计算可得结果;
(2)根据定义变形,得到方程,求出x值即可.
【小题1】
解:由题意可得:
=
=
=
=;
【小题2】
∵
=
=
=
=2
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得:x=3.
【点睛】
本题考查了新定义运算,理解定义,结合新定义,能将所求问题转化为一元一次方程是解题的关键.
5、
(1)①C,A
②
(2)和
【分析】
(1)①由内联点的定义可知C,A满足条件
②结合图象可知当点B为圆心的圆与AO线段相切时,有一个公共点,且符合内联点定义,故时均符合题意.
(2)由(1)问可知,当OE与OF,或OF与EF垂直时有一个公共点且满足内联点的定义,故由此可作图,作图见解析,即可由勾股定理、斜率的性质,解得和
(1)
①如图所示,由图像可知C,A点是关于点B的内联点
②如图所示,当点B为圆心的圆与AO线段相切时,有一个公共点,符合内联点定义
故.
(2)
如图所示,以O为圆心的圆O为点F点的运动轨迹,由(1)问可知当∠EFO或∠FOE为90°时,关于点E的内联点存在且只有一个,故当F点运动到和的范围内时,关于点E的内联点存在.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
设F点坐标为(x,y),则,由图象即题意知
当F点在点时,,即有
,
当F点在点时,,即有
即
当F点在点时,,即有
即
解得或
故,
当F点在点时,,
即
化简得
且
即
即
化简得
联立
解得或x=0
故
综上所述,F点的横坐标n取值范围为和.
【点睛】
本题考查了有关圆和三角形的新定义概念的综合题目,结合题意作出图象,运用数形结合的思想,熟练应用勾股定理以及斜率是解题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
-4
-1
2
3
-4
-1
2
3
【历年真题】湖南省益阳市中考数学模拟真题测评 A卷(含答案详解): 这是一份【历年真题】湖南省益阳市中考数学模拟真题测评 A卷(含答案详解),共25页。试卷主要包含了生活中常见的探照灯等内容,欢迎下载使用。
【历年真题】湖南省武冈市中考数学模拟测评 卷(Ⅰ)(含详解): 这是一份【历年真题】湖南省武冈市中考数学模拟测评 卷(Ⅰ)(含详解),共21页。试卷主要包含了下列语句中,不正确的是,利用如图①所示的长为a等内容,欢迎下载使用。
【历年真题】湖南省武冈市中考数学模拟测评 卷(Ⅰ)(含答案详解): 这是一份【历年真题】湖南省武冈市中考数学模拟测评 卷(Ⅰ)(含答案详解),共29页。试卷主要包含了如图,下列条件中不能判定的是,如图,等内容,欢迎下载使用。