[中考专题]2022年北京市密云县中考数学备考模拟练习 (B)卷(含答案及详解)
展开2022年北京市密云县中考数学备考模拟练习 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,OM平分,,,则( ).
A.96° B.108° C.120° D.144°
2、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )
A.9 B.10 C.12 D.14
3、若,则的值是( )
A. B.0 C.1 D.2022
4、下列计算错误的是( )
A. B. C. D.
5、如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )
A.1 B. C. D.
6、下列方程中,属于二元一次方程的是( )
A.xy﹣3=1 B.4x﹣2y=3 C.x+=4 D.x2﹣4y=1
7、将抛物线y=2x2向下平移3个单位后的新抛物线解析式为( )
A.y=2(x﹣3)2 B.y=2(x+3)2 C.y=2x2﹣3 D.y=2x2+3
8、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )
A. B. C. D.
9、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )m.
A. B. C. D.200
10、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )
A.200(1 a)2 148 B.200(1 a)2 148
C.200(1 2a)2 148 D.200(1 a 2) 148
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小河的两条河岸线a∥b,在河岸线a的同侧有A、B两个村庄,考虑到施工安全,供水部门计划在岸线b上寻找一处点Q建设一座水泵站,并铺设水管PQ,并经由PA、PB跨河向两村供水,其中QP⊥a于点P.为了节约经费,聪明的建设者们已将水泵站Q点定好了如图位置(仅为示意图),能使三条水管长的和最小.已知,,,在A村看点P位置是南偏西30°,那么在A村看B村的位置是_________.
2、等腰三角形ABC中,项角A为50°,点D在以点A为圆心,BC的长为半径的圆上,若BD=BA,则∠DBC的度数为_____.
3、已知一个角等于70°,则这个角的补角等于___________
4、经过点M(3,1)且平行于x轴的直线可以表示为直线 ______.
5、如图,AB,CD是的直径,弦,所对的圆心角为40°,则的度数为______.
三、解答题(5小题,每小题10分,共计50分)
1、在△ABC中,∠BAC=90°,P是线段AC上一动点,CQ⊥BP于点Q,D是线段BQ上一点,E是射线CQ上一点,且满足,连接AE,DE.
(1)如图1,当AB=AC时,用等式表示线段DE与AE之间的数量关系,并证明;
(2)如图2,当AC=2AB=6时,用等式表示线段DE与AE之间的数量关系,并证明;
(3)在(2)的条件下,若,AE⊥CQ,直接写出A,D两点之间的距离.
2、综合与实践
如图1,在综合实践课上,老师让学生用两个等腰直角三角形进行图形的旋转探究.在中,,,在中,,,点,分别在,边行,直角顶点重合在一起,将绕点逆时针旋转,设旋转角,其中.
(1)当点落在上时,如图2:
①请直接写出的度数为______(用含的式子表示);
②若,,求的长;
(2)如图3,连接,,并延长交于点,请判断与的位置关系,并加以证明;
(3)如图4,当与是两个相等钝角时,其他条件不变,即在与中,,,,,则的度数为______(用含或的式子表示).
3、一副三角板按如图1方式拼接在一起,其中边OA、OC与直线EF重合,∠AOB=45°,∠COD=60°.
(1)求图1中∠BOD的度数.
(2)如图2,三角板COD固定不动,将三角板AOB绕点O按顺时针方向旋转一个角度(即∠AOE=),在转动过程中两个三角板一直处于直线EF的上方.
①当OB平分OA、OC、OD其中的两边组成的角时,求满足要求的所有旋转角度的值;
②在转动过程中是否存在∠BOC=2∠AOD?若存在,求此时α的值;若不存在,请说明理由.
4、某市为了解七年级数学教育教学情况,对全市七年级学生进行数学综合素质测评,我校也随机抽取了部分学生的测试成绩作为样本进行分析,请根据图中所给出的信息,解答下列问题:
(1)在这次调查中被抽取学生的总人数为 人;将表示成绩类别为“中”的条形统计图补充完整.
(2)成绩类别为“优”的圆心角的度数为 .
(3)某校七年级共有750人参加了这次数学考试,估计本校七年级共有多少名学生的数学成绩可达到良或良以上等级?
5、如图,在四边形ABCD中,BA=BC,AC⊥BD,垂足为O.P是线段OD上的点(不与点O重合),把线段AP绕点A逆时针旋转得到AQ,∠OAP=∠PAQ,连接PQ,E是线段PQ的中点,连接OE交AP于点F.
(1)若BO=DO,求证:四边形ABCD是菱形;
(2)探究线段PO,PE,PF之间的数量关系.
-参考答案-
一、单选题
1、B
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
2、C
【分析】
过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.
【详解】
解:过点F作MN⊥AD于点M,交BC于点N,连接BD,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC
∴△AFE∽△CFB
∴
∵DE=2AE
∴AD=3AE=BC
∴
∴,即
又
∴
∴
故选:C
【点睛】
本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.
3、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
4、A
【分析】
直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可.
【详解】
解:A.,故此选项计算错误,符合题意;
B.,故此选项计算正确,不合题意;
C.,故此选项计算正确,不合题意;
D.,故此选项计算正确,不合题意;
故选:A.
【点睛】
此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.
5、C
【分析】
证明,则,计算的长,得,证明是等腰直角三角形,可得的长.
【详解】
解:四边形是正方形,
,,,
,
,
,
,
,
,
,
,
,
是等腰直角三角形,
,
故选:C.
【点睛】
本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.
6、B
【分析】
二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.
【详解】
解:A、xy-3=1,是二元二次方程,故本选项不合题意;
B、4x-2y=3,属于二元一次方程,故本选项符合题意;
C、x+=4,是分式方程,故本选项不合题意;
D、x2-4y=1,是二元二次方程,故本选项不合题意;
故选:B.
【点睛】
此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
7、C
【分析】
根据“上加下减”的原则进行解答即可.
【详解】
解:将抛物线y=2x2向下平移3个单位后的新抛物线解析式为:y=2x2-3.
故选:C.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.
8、B
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:641200用科学记数法表示为:641200=,
故选择B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、B
【分析】
连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可.
【详解】
解:连接BD,如下图所示:
与所对的弧都是.
.
所对的弦为直径AD,
.
又,
为等腰直角三角形,
在中,,
由勾股定理可得:.
故选:B.
【点睛】
本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.
10、B
【分析】
第一次降价后价格为,第二次降价后价格为整理即可.
【详解】
解:第一次降价后价格为
第二次降价后价格为
故选B.
【点睛】
本题考查了一元二次方程的应用.解题的关键在于明确每次降价前的价格.
二、填空题
1、北偏西60°
【分析】
根据题意作出图形,取的中点,连接,过点作,过点作,交的延长线于点,作关于的对称点,平移至处,则最小,即三条水管长的和最小,进而找到村的位置,根据方位角进行判断即可.
【详解】
解:如图,取的中点,连接,过点作,过点作,交的延长线于点
作关于的对称点,平移至处,则最小,即三条水管长的和最小,
此时三点共线,
点在的延长线上,
在A村看点P位置是南偏西30°,
,
是等边三角形
,
即在A村看B村的位置是北偏西60°
故答案为:北偏西60°
【点睛】
本题考查了轴对称的性质,方位角的计算,等边三角形的性质与判定,等边对等角,根据题意作出图形是解题的关键.
2、15°或115°
【分析】
根据题意作出图形,根据等腰三角形的性质和三角形的内角和定理求得,,根据即可求得∠DBC的度数
【详解】
解:如图,等腰三角形ABC中,顶角为50°,点D在以点A为圆心,BC的长为半径的圆上,
,
BD=BA,
又
当在位置时,同理可得
故答案为:15°或115°
【点睛】
本题考查了圆的性质,三角形全等的性质与判定,三角形内角和定理,等腰三角形的定义,根据题意画出图形是解题的关键.
3、度
【分析】
根据补角的定义:若两角相加等于,则两角互补,求出答案即可.
【详解】
∵一个角等于70°,
∴这个角的补角为:.
故答案为:.
【点睛】
本题考查补角的定义,掌握两角互补,则两角相加为是解题的关键.
4、y=1
【分析】
根据平行于x轴的直线上所有点纵坐标相等,又直线经过点M(3,1),则该直线上所有点的共同特点是纵坐标都是1.
【详解】
解:∵所求直线经过点M(3,1)且平行于x轴,
∴该直线上所有点纵坐标都是1,
故可以表示为直线y=1.
故答案为:y=1.
【点睛】
此题考查与坐标轴平行的直线的特点:平行于x轴的直线上点的纵坐标相等,平行于y轴的直线上点的横坐标相等.
5、70°
【分析】
连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE,根据平行线的性质即可得到∠AOC的度数.
【详解】
解:连接OE,如图,
∵弧CE所对的圆心角度数为40°,
∴∠COE=40°,
∵OC=OE,
∴∠OCE=∠OEC,
∴∠OCE=(180°-40°)÷2=70°,
∵CE//AB,
∴∠AOC=∠OCE=70°,
故答案为:70°.
【点睛】
本题主要考查了等腰三角形的性质,三角形内角和定理,弧与圆心角的关系,平行线的性质,求出∠COE=40°是解题的关键.
三、解答题
1、
(1),理由见解析
(2),理由见解析
(3)
【分析】
(1)连接AD.根据,可得,从而得到,再由,可得,从而得到,进而得到,即可求解;
(2)连接AD.先证明,可得到,从而得到,再由勾股定理,即可求解;
(3)根据题意可先证明四边形ADQE是矩形,可得到AD⊥BP,再由,可得AP=4,再由勾股定理可得,然后根据三角形的面积,即可求解.
(1)
解:
理由:如图,连接AD.
∵,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,
∴,即,
∴,
在Rt△DAE中,
∵,
∴;
(2)
解:,
理由:如图,连接AD.
∵,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,即,
在Rt△DAE中,∵,
∴;
(3)
解: 由(2)得:∠DAE=90°,
∵AE⊥CQ,BP⊥CQ,
∴∠DQE=∠AEQ=90°,PQ∥AE,
∴四边形ADQE是矩形,
∴∠ADP=90°,即AD⊥BP,
∵,AC=6,
∴AP=4,
∵AC=2AB=6,
∴AB=3,
∵∠BAC=90°,
∴ ,
∵ ,
∴ .
【点睛】
本题主要考查了相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识,熟练掌握相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识是解题的关键.
2、(1)①;②;(2),证明见解析;(3)
【分析】
(1)①由等腰直角三角形得,,故可求出;
②过点M作于点,设,则,由,得是等腰直角三角形,得出,即可求出x的值,由勾股定理即可得出答案;
(2)设与相交于点,由旋转得,根据SAS证明,由全等三角形的性质得,由得即,故可证;
(3)设与相交于点,同(2)得,故,即可求.
【详解】
(1)①∵,都是等腰直角三角形,
∴,,
∵,
∴,
∴;
②
如图2,作于点,
设,
∵,,
∴,
∴,
∴,
在中,,
∵,
∴,
∴,
∴,
∴,,
∴;
(2),证明如下:
如图3,设与相交于点,
由旋转可知:,
∵,,
∴,
∴,
∵,
∴即,
∴,
∴;
(3)如图4,
设与相交于点,同(2)得,
∴,
.
【点睛】
本题考查等腰三角形的判定与性质,全等三角形的判定与性质,掌握相关知识点间的应用是解题的关键.
3、
(1)75
(2)①旋转角α的值为30°,90°,105°;②当α=105°或125°时,存在∠BOC=2∠AOD.
【分析】
(1)根据平平角的定义即可得到结论;
(2)①根据已知条件和角平分线的定义即可得到结论;
②当OA在OD的左侧时,当OA在OD的右侧时,列方程即可得到结论.
(1)
解:∵∠AOB=45°,∠COD=60°,
∴∠BOD=180°-∠AOB-∠COD=75°,
故答案为:75;
(2)
解:①当OB平分∠AOD时,
∵∠AOE=α,∠COD=60°,
∴∠AOD=180°-∠AOE-∠COD=120°-α,
∴∠AOB=∠AOD=60°-α=45°,
∴α=30°,
当OB平分∠AOC时,
∵∠AOC=180°-α,
∴∠AOB=90°-α=45°,
∴α=90°;
当OB平分∠DOC时,
∵∠DOC=60°,
∴∠BOC=30°,
∴α=180°-45°-30°=105°,
综上所述,旋转角度α的值为30°,90°,105°;
②当OA在OD的左侧时,则∠AOD=120°-α,∠BOC=135°-α,
∵∠BOC=2∠AOD,
∴135°-α=2(120°-α),
∴α=105°;
当OA在OD的右侧时,则∠AOD=α-120°,∠BOC=135°-α,
∵∠BOC=2∠AOD,
∴135°-α=2(α-120°),
∴α=125°,
综上所述,当α=105°或125°时,存在∠BOC=2∠AOD.
【点睛】
本题考查了角的计算,特殊角,角平分线的定义,正确的理解题意是解题的关键.
4、
(1),见解析;
(2);
(3)
【分析】
(1)根据成绩类别为“良”的人数除以其所占的百分数求解抽取学生总人数,再由总人数乘以成绩类别为“中”所占的比例求解成绩类别为“中”的人数,即可补全条形统计图;
(2)求出成绩类别为“优”所占的百分数即可求得其所对应的圆心角;
(3)根据家长总人数乘以良或良以上等级所占的百分数即可求解.
(1)
解:22÷44%=50(人),50×20%=10(人),
答:这次调查中被抽取学生的总人数为50人,补全条形统计图如图所示:
故答案为:50;
(2)
解:360°×=72°,
答:成绩类别为“优”的圆心角的度数为72°,
故答案为:72°;
(3)
解:750×=480(名),
答:估计本校七年级共有480名学生的数学成绩可达到良或良以上等级
【点睛】
本题考查条形统计图和扇形统计图的信息关联、用样本估计总体、能从条形统计图和扇形统计图中获取有效信息是解答的关键.
5、(1)见详解;(2)
【分析】
(1)根据线段垂直平分线的性质可知AB=AD,BC=CD,进而根据菱形的判定定理可求证;
(2)连接AE并延长,交BD的延长线于点G,连接FQ,由题意易得,则有,然后可得,则有,进而可得,然后证明,即有,最后根据勾股定理可求解.
【详解】
(1)证明:∵AC⊥BD,BO=DO,
∴AC垂直平分BD,
∴AB=AD,BC=CD,
∵BA=BC,
∴BA=AD=CD=BC,
∴四边形ABCD是菱形;
(2)解:,理由如下:
连接AE并延长,交BD的延长线于点G,连接FQ,如图所示:
由旋转的性质可得AP=AQ,
∵E是线段PQ的中点,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,
设,
∵AP=AQ,E是线段PQ的中点,
∴,
∴,
∴,
∴,
∴,
∵,
∴(SAS),
∴,,
∴在Rt△QFP中,由勾股定理得:,
∵E是线段PQ的中点,
∴,
∴.
【点睛】
本题主要考查菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定,熟练掌握菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定是解题的关键.
【真题汇总卷】2022年北京市密云县中考数学模拟真题练习 卷(Ⅱ)(含答案详解): 这是一份【真题汇总卷】2022年北京市密云县中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了已知4个数,有依次排列的3个数等内容,欢迎下载使用。
【难点解析】2022年北京市密云县中考数学备考模拟练习 (B)卷(含详解): 这是一份【难点解析】2022年北京市密云县中考数学备考模拟练习 (B)卷(含详解),共25页。试卷主要包含了下列计算错误的是,在以下实数中等内容,欢迎下载使用。
【难点解析】2022年北京市海淀区中考数学备考模拟练习 (B)卷(含答案及详解): 这是一份【难点解析】2022年北京市海淀区中考数学备考模拟练习 (B)卷(含答案及详解),共21页。试卷主要包含了已知,,且,则的值为,下列各组图形中一定是相似形的是,如图所示,该几何体的俯视图是,有下列说法等内容,欢迎下载使用。