2022年高考数学(理数)一轮复习课时作业57《排列与组合(学生版)
展开课时作业57 排列与组合
一、选择题
1.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )
A.85 B.56
C.49 D.28
2.4位男生和2位女生排成一排,男生有且只有2位相邻,则不同排法的种数是( )
A.72 B.96
C.144 D.240
3.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )
A.144 B.120
C.72 D.24
4.A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐在最北面的椅子上,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )
A.60种 B.48种
C.30种 D.24种
5.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有( )
A.900种 B.600种
C.300种 D.150种
6.将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,则甲、乙在同一路口的分配方案共有( )
A.18种 B.24种
C.36种 D.72种
7.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼15”飞机准备着舰,规定乙机不能最先着舰,且丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为( )
A.24 B.36
C.48 D.96
二、填空题
8.现将5张连号的电影票分给甲、乙等5个人,每人一张,若甲、乙分得的电影票连号,则共有 种不同的分法.(用数字作答)
9.现有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列,有 种不同的方法.(用数字作答)
10.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 个没有重复数字的四位数.(用数字作答)
11.某班主任准备请2018届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少有一人参加,若甲、乙同时参加,则他们发言中间需恰好间隔一人,那么不同的发言顺序共有 种.(用数字作答)
12.福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有( )
A.90种 B.180种
C.270种 D.360种
13.将数字“124467”重新排列后得到不同的偶数的个数为( )
A.72 B.120
C.192 D.240
14.某小区一号楼共有7层,每层只有1家住户,已知任意相邻两层楼的住户在同一天至多一家有快递,且任意相邻三层楼的住户在同一天至少一家有快递,则在同一天这7家住户有无快递的可能情况共有 种.
15.元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有( )
A.18种 B.24种
C.48种 D.36种
16.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示的正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有( )
A.22种 B.24种
C.25种 D.36种
高考数学(理数)一轮复习:课时达标检测57《二项分布与正态分布》(学生版): 这是一份高考数学(理数)一轮复习:课时达标检测57《二项分布与正态分布》(学生版)
高考数学(理数)一轮复习课时作业64《排列与组合》(原卷版): 这是一份高考数学(理数)一轮复习课时作业64《排列与组合》(原卷版),共3页。
高考数学(理数)一轮复习课时作业57《直线与圆锥曲线》(原卷版): 这是一份高考数学(理数)一轮复习课时作业57《直线与圆锥曲线》(原卷版),共4页。试卷主要包含了已知直线l与抛物线C,已知点A在抛物线C,已知双曲线C,已知双曲线E等内容,欢迎下载使用。