![2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第3讲 第1课时 高效演练分层突破学案01](http://img-preview.51jiaoxi.com/3/3/12655517/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第3讲 第1课时 高效演练分层突破学案02](http://img-preview.51jiaoxi.com/3/3/12655517/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第3讲 第1课时 高效演练分层突破学案03](http://img-preview.51jiaoxi.com/3/3/12655517/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
- 2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第1讲 任意角和弧度制及任意角的三角函数学案 学案 4 次下载
- 2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第2讲 同角三角函数的基本关系及诱导公式学案 学案 4 次下载
- 2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第3讲 第2课时 高效演练分层突破学案 学案 3 次下载
- 2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第3讲 第2课时 简单的三角恒等变换学案 学案 4 次下载
- 2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第3讲 高效演练分层突破学案 学案 4 次下载
2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第3讲 第1课时 高效演练分层突破学案
展开1.(2020·广东揭阳一模)若sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-2α))=eq \f(3,5),则sin4α-cs4α的值为( )
A.eq \f(4,5) B.eq \f(3,5)
C.-eq \f(4,5) D.-eq \f(3,5)
解析:选D.因为sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-2α))=eq \f(3,5),所以cs 2α=eq \f(3,5),因此sin4α-cs4α=(sin2α+cs2α)(sin2α-cs2α)=1-2cs2α=-cs 2α=-eq \f(3,5),选D.
2.(2020·湖南长沙长郡中学一模)已知sin(α+2β)=eq \f(3,4),cs β=eq \f(1,3),α,β为锐角,则sin(α+β)的值为( )
A.eq \f(3\r(7)-2\r(2),12) B.eq \f(3-2\r(14),12)
C.eq \f(3\r(7)+2\r(2),12) D.eq \f(3+2\r(14),12)
解析:选D.因为cs β=eq \f(1,3),0<β
因为sin(α+2β)=eq \f(3,4),α为锐角,所以eq \f(π,2)<α+2β<π,
所以cs(α+2β)=-eq \f(\r(7),4),
所以sin(α+β)=sin[(α+2β)-β]
=sin(α+2β)cs β-cs(α+2β)sin β
=eq \f(3,4)×eq \f(1,3)-eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(7),4)))×eq \f(2\r(2),3)=eq \f(3+2\r(14),12).故选D.
3.已知taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(1,2),且-eq \f(π,2)<α<0,则eq \f(2sin2α+sin 2α,cs\b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4))))=( )
A.-eq \f(2\r(5),5) B.-eq \f(3\r(5),10)
C.-eq \f(3\r(10),10) D.eq \f(2\r(5),5)
解析:选A.因为taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(tan α+1,1-tan α)=eq \f(1,2),所以tan α=-eq \f(1,3),因为tan α=eq \f(sin α,cs α),sin2α+cs2α=1,α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),0)),所以sin α=-eq \f(\r(10),10).
所以eq \f(2sin2α+sin 2α,cs\b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4))))=eq \f(2sin α(sin α+cs α),cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α)))=
eq \f(4sin α(sin α+cs α),\r(2)(sin α+cs α))=2eq \r(2)sin α=2eq \r(2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(10),10)))=-eq \f(2\r(5),5).故选A.
4.已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))=eq \f(1,4),则cs x+cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))=( )
A.eq \f(\r(3),4) B.-eq \f(\r(3),4)
C.eq \f(1,4) D.±eq \f(\r(3),4)
解析:选A.因为cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))=eq \f(1,4),
所以cs x+cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))=cs x+eq \f(1,2)cs x+eq \f(\r(3),2)sin x
=eq \r(3)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2)cs x+\f(1,2)sin x))=eq \r(3)cs eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))=eq \r(3)×eq \f(1,4)=eq \f(\r(3),4).
故选A.
5.eq \f(2cs 10°-sin 20°,sin 70°)的值是( )
A.eq \f(1,2) B.eq \f(\r(3),2)
C.eq \r(3) D.eq \r(2)
解析:选C.原式=eq \f(2cs(30°-20°)-sin 20°,sin 70°)
=eq \f(2(cs 30°·cs 20°+sin 30°·sin 20°)-sin 20°,sin 70°)
=eq \f(\r(3)cs 20°,cs 20°)=eq \r(3).
6.sin 10°sin 50°sin 70°=________.
解析:sin 10°sin 50°sin 70°=sin 10°cs 40°cs 20°
=eq \f(sin 10°cs 10°cs 20°cs 40°,cs 10°)=eq \f(\f(1,8)sin 80°,cs 10°)=eq \f(1,8).
答案:eq \f(1,8)
7.(2020·益阳模拟)已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,6)))+sin α=eq \f(4\r(3),5),则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(7π,6)))=________.
解析:由cseq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,6)))+sin α=eq \f(4\r(3),5),
可得eq \f(\r(3),2)cs α+eq \f(1,2)sin α+sin α=eq \f(4\r(3),5),
即eq \f(3,2)sin α+eq \f(\r(3),2)cs α=eq \f(4\r(3),5),
所以eq \r(3)sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))=eq \f(4\r(3),5),
即sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))=eq \f(4,5),
所以sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(7π,6)))=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))=-eq \f(4,5).
答案:-eq \f(4,5)
8.已知tan α=eq \f(m,3),taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(2,m),则m=________.
解析:由题意,tan α=eq \f(m,3),taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(tan α+1,1-tan α)=eq \f(2,m),则eq \f(\f(m,3)+1,1-\f(m,3))=eq \f(2,m),所以m=-6或1.
答案:-6或1
9.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5),-\f(4,5))).
(1)求sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+π))的值;
(2)若角β满足sin(α+β)=eq \f(5,13),求cs β的值.
解:(1)由角α的终边过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5),-\f(4,5)))得sin α=-eq \f(4,5),
所以sin(α+π)=-sin α=eq \f(4,5).
(2)由角α的终边过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5),-\f(4,5)))得cs α=-eq \f(3,5),
由sin(α+β)=eq \f(5,13)得cs(α+β)=±eq \f(12,13).
由β=(α+β)-α得
cs β=cs(α+β)cs α+sin(α+β)sin α,
所以cs β=-eq \f(56,65)或cs β=eq \f(16,65).
10.已知α,β为锐角,tan α=eq \f(4,3),cs(α+β)=-eq \f(\r(5),5).
(1)求cs 2α的值;
(2)求tan(α-β)的值.
解:(1)因为tan α=eq \f(4,3),tan α=eq \f(sin α,cs α),
所以sin α=eq \f(4,3)cs α.
因为sin2 α+cs2 α=1,
所以cs2 α=eq \f(9,25),
因此cs 2α=2cs2 α-1=-eq \f(7,25).
(2)因为α,β为锐角,所以α+β∈(0,π).
又因为cs(α+β)=-eq \f(\r(5),5),
所以sin(α+β)=eq \r(1-cs2(α+β))=eq \f(2\r(5),5),
因此tan(α+β)=-2.
因为tan α=eq \f(4,3),所以tan 2α=eq \f(2tan α,1-tan2 α)=-eq \f(24,7),
所以tan(α-β)=tan[2α-(α+β)]=eq \f(tan 2α-tan(α+β),1+tan 2αtan(α+β))=-eq \f(2,11).
[综合题组练]
1.(2020·河南九师联盟2月质量检测)若α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),且cs 2α=eq \f(\r(2),5)sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4))),则tan α=( )
A.eq \f(3,4) B.eq \f(3,5)
C.eq \f(4,3) D.eq \f(5,3)
解析:选A.因为α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),所以sin α+cs α>0.
因为cs 2α=eq \f(\r(2),5)sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4))),
所以(cs α+sin α)(cs α-sin α)=eq \f(1,5)(sin α+cs α),
所以cs α-sin α=eq \f(1,5).
将cs α-sin α=eq \f(1,5)两边平方可得1-2sin αcs α=eq \f(1,25),
所以sin αcs α=eq \f(12,25).所以eq \f(sin αcs α,sin2 α+cs2 α)=eq \f(12,25).
分子、分母同除以cs2 α可得eq \f(tan α,tan2 α+1)=eq \f(12,25),
解得tan α=eq \f(3,4)或eq \f(4,3)(舍),即tan α=eq \f(3,4).
2.(创新型)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m=2sin 18°,若m2+n=4,则eq \f(m\r(n),2cs227°-1)=( )
A.8 B.4
C.2 D.1
解析:选C.因为m=2sin 18°,m2+n=4,所以n=4-m2=4-4sin218°=4cs218°.
所以eq \f(m\r(n),2cs227°-1)=eq \f(2sin 18°\r(4cs218°),2cs227°-1)=eq \f(4sin 18°cs 18°,2cs227°-1)=eq \f(2sin 36°,cs 54°)=eq \f(2sin 36°,sin 36°)=2.故选C.
3.已知0<α
所以tan α=eq \f(sin α,cs α)=eq \f(3,4),
则taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(5π,4)))=tan(α+eq \f(π,4))=eq \f(tan α+1,1-tan α)=7.
eq \f(sin2 α+sin 2α,cs2α+cs 2α)=eq \f(sin2α+2sin αcs α,2cs2α-sin2α)=eq \f(tan2α+2tan α,2-tan2α)=eq \f(\f(9,16)+\f(6,4),2-\f(9,16))=eq \f(33,23).
答案:7 eq \f(33,23)
4.设α,β∈[0,π],且满足sin αcs β-cs αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为________.
解析:由sin αcs β-cs αsin β=1,
得sin(α-β)=1,
又α,β∈[0,π],所以α-β=eq \f(π,2),
所以eq \b\lc\{(\a\vs4\al\c1(0≤α≤π,,0≤β=α-\f(π,2)≤π,))即eq \f(π,2)≤α≤π,
所以sin(2α-β)+sin(α-2β)
=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2α-α+\f(π,2)))+sin(α-2α+π)
=cs α+sin α=eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4))).
因为eq \f(π,2)≤α≤π,
所以eq \f(3π,4)≤α+eq \f(π,4)≤eq \f(5π,4),
所以-1≤eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))≤1,
即取值范围为[-1,1].
答案:[-1,1]
5.已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)+α))cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)-α))=-eq \f(1,4),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3),\f(π,2))).
(1)求sin 2α的值;
(2)求tan α-eq \f(1,tan α)的值.
解:(1)cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)+α))cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)-α))
=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)+α))sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)+α))=eq \f(1,2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(2α+\f(π,3)))=-eq \f(1,4),即sineq \b\lc\(\rc\)(\a\vs4\al\c1(2α+\f(π,3)))=-eq \f(1,2).
因为α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3),\f(π,2))),
所以2α+eq \f(π,3)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(π,\f(4π,3))),
所以cseq \b\lc\(\rc\)(\a\vs4\al\c1(2α+\f(π,3)))=-eq \f(\r(3),2),
所以sin 2α=sineq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(2α+\f(π,3)))-\f(π,3)))
=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2α+\f(π,3)))cs eq \f(π,3)-cseq \b\lc\(\rc\)(\a\vs4\al\c1(2α+\f(π,3)))sin eq \f(π,3)=-eq \f(1,2)×eq \f(1,2)-eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(3),2)))×eq \f(\r(3),2)=eq \f(1,2).
(2)因为α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3),\f(π,2))),所以2α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3),π)),
又由(1)知sin 2α=eq \f(1,2),所以cs 2α=-eq \f(\r(3),2).
所以tan α-eq \f(1,tan α)=eq \f(sin α,cs α)-eq \f(cs α,sin α)=eq \f(sin2α-cs2α,sin αcs α)
=eq \f(-2cs 2α,sin 2α)=-2×eq \f(-\f(\r(3),2),\f(1,2))=2eq \r(3).
6.如图,在平面直角坐标系xOy中,以x轴正半轴为始边的锐角α与钝角β的终边与单位圆分别交于A,B两点,x轴正半轴与单位圆交于点M,已知S△OAM=eq \f(\r(5),5),点B的纵坐标是eq \f(\r(2),10).
(1)求cs(α-β)的值;
(2)求2α-β的值.
解:(1)由题意,OA=OM=1,
因为S△OAM=eq \f(\r(5),5),α为锐角,
所以sin α=eq \f(2\r(5),5),cs α=eq \f(\r(5),5).
又点B的纵坐标是eq \f(\r(2),10).
所以sin β=eq \f(\r(2),10),cs β=-eq \f(7\r(2),10),
所以cs(α-β)=cs αcs β+sin αsin β=eq \f(\r(5),5)×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(7\r(2),10)))+eq \f(2\r(5),5)×eq \f(\r(2),10)=-eq \f(\r(10),10).
(2)因为cs 2α=2cs2α-1=2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(5),5)))eq \s\up12(2)-1=-eq \f(3,5),
sin 2α=2sin α·cs α=2×eq \f(2\r(5),5)×eq \f(\r(5),5)=eq \f(4,5),
所以2α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)).
因为β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),
所以2α-β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),\f(π,2))).
因为sin(2α-β)=sin 2α·cs β-cs 2α·sin β=-eq \f(\r(2),2),
所以2α-β=-eq \f(π,4).
2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第6讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第6讲 高效演练分层突破学案,共7页。
2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第7讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第7讲 高效演练分层突破学案,共8页。
2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第1讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第1讲 高效演练分层突破学案,共6页。