2023届高考一轮复习讲义(文科)第一章 集合与常用逻辑用语 第3讲 高效演练 分层突破学案
展开1.已知命题p:∃x0>1,xeq \\al(2,0)-1>0,那么﹁p是( )
A.∀x>1,x2-1>0
B.∀x>1,x2-1≤0
C.∃x0>1,xeq \\al(2,0)-1≤0
D.∃x0≤1,xeq \\al(2,0)-1≤0
解析:选B.特称命题的否定为全称命题,所以﹁p:∀x>1,x2-1≤0.
2.已知命题p:实数的平方是非负数,则下列结论正确的是( )
A.命题p是假命题
B.命题p是特称命题
C.命题p是全称命题
D.命题p既不是全称命题也不是特称命题
解析:选C.本题考查命题真假的判断以及全称命题、特称命题的判断.命题p:实数的平方是非负数,是真命题,命题p是全称命题,故选C.
3.(2020·吉林第三次调研测试)已知命题p,q,则“﹁p为假命题”是“p∨q为真命题”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A.若﹁p为假命题,则p为真命题,则p∨q为真命题;若p∨q为真命题,则p,q中至少有一个为真命题,但p不一定为真命题,故无法判定﹁p为假命题.即“﹁p为假命题”是“p∨q为真命题”的充分不必要条件.故选A.
4.(2020·辽宁五校协作体联考)已知命题“∃x∈R,4x2+(a-2)x+eq \f(1,4)≤0”是假命题,则实数a的取值范围为( )
A.(-∞,0) B.[0,4]
C.[4,+∞) D.(0,4)
解析:选D.因为命题“∃x∈R,4x2+(a-2)x+eq \f(1,4)≤0”是假命题,所以其否定“∀x∈R,4x2+(a-2)x+eq \f(1,4)>0”是真命题,则Δ=(a-2)2-4×4×eq \f(1,4)=a2-4a<0,解得05.命题p的否定是“对所有正数x,eq \r(x)>x+1”,则命题p可写为 .
解析:因为p是﹁p的否定,所以只需将全称量词变为特称量词,再对结论否定即可.
答案:∃x0∈(0,+∞),eq \r(x0)≤x0+1
6.已知命题p:x2+4x+3≥0,q:x∈Z,且“p∧q”与“﹁q”同时为假命题,则x= .
解析:若p为真,则x≥-1或x≤-3,
因为“﹁q”为假,则q为真,即x∈Z,
又因为“p∧q”为假,所以p为假,故-3
答案:-2
7.已知命题p:f(x)=eq \f(1-2m,x2)在区间(0,+∞)上是减函数;命题q:不等式x2-2x>m-1的解集为R.若命题“p∨q”为真,则实数m的取值范围是 ;若“p∧q”为假,则实数m的取值范围是 .
解析:对于命题p,由f(x)=eq \f(1-2m,x2)在区间(0,+∞)上是减函数,得1-2m>0,解得m
8.设命题p:函数y=lga(x+1)在区间(-1,+∞)内单调递减,q:曲线y=x2+(2a-3)x+1与x轴有两个不同的交点.若p∧(﹁q)为真命题,求实数a的取值范围.
解:函数y=lga(x+1)在区间(-1,+∞)内单调递减⇔0曲线y=x2+(2a-3)x+1与x轴有两个不同的交点⇔Δ=(2a-3)2-4>0⇔a
所以p为真命题,q为假命题.
由eq \b\lc\{(\a\vs4\al\c1(0所以实数a的取值范围是eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(1,2),1)).
[综合题组练]
1.已知命题p:∃x∈R,x2+1<2x;命题q:若mx2-mx+1>0恒成立,则0
C.“p∨q”为假命题 D.“p∧q”为真命题
解析:选C.因为x2+1<2x,即x2-2x+1<0,也即(x-1)2<0,所以命题p为假;若mx2-mx+1>0恒成立,则m=0或eq \b\lc\{(\a\vs4\al\c1(m>0,,Δ=m2-4m<0,))则0≤m<4,所以命题q为假,故选C.
2.(2020·湖北八校联考)下列说法正确的是( )
A.“若a+b≥4,则a,b中至少有一个不小于2”的逆命题是真命题
B.命题“设a,b∈R,若a+b≠6,则a≠3或b≠3”是一个真命题
C.“∃x0∈R,xeq \\al(2,0)-x0<0”的否定是“∀x∈R,x2-x>0”
D.“a+1>b”是“a>b”的一个充分不必要条件
解析:选B.对于A,原命题的逆命题为“若a,b中至少有一个不小于2,则a+b≥4”,而a=4,b=-4满足a,b中至少有一个不小于2,但此时a+b=0,故A不正确;对于B,此命题的逆否命题为“设a,b∈R,若a=3且b=3,则a+b=6”,为真命题,所以原命题也是真命题,故B正确;对于C,“∃x0∈R,xeq \\al(2,0)-x0<0”的否定是“∀x∈R,x2-x≥0”,故C不正确;对于D,由a>b可推得a+1>b,但由a+1>b不能推出a>b,故D错误.
3.短道速滑队组织6名队员(含赛前系列赛积分最靠前的甲、乙、丙三名队员在内)进行冬奥会选拔赛,记“甲得第一名”为p,“乙得第二名”为q,“丙得第三名”为r,若p∨q是真命题,p∧q是假命题,(﹁q)∧r是真命题,则选拔赛的结果为( )
A.甲得第一名,乙得第二名,丙得第三名
B.甲得第二名,乙得第一名,丙得第三名
C.甲得第一名,乙得第三名,丙得第二名
D.甲得第一名,乙没得第二名,丙得第三名
解析:选D.由(﹁q)∧r是真命题,得﹁q为真命题,q为假命题(乙没得第二名),且r为真命题(丙得第三名);p∨q是真命题,由于q为假命题,只能p为真命题(甲得第一名),这与p∧q是假命题相吻合;由于还有其他三名队员参赛,只能肯定其他队员得第二名,乙没得第二名,故选D.
4.已知m∈R,命题p:对任意实数x,不等式x2-2x-1≥m2-3m恒成立,若﹁p为真命题,则m的取值范围是 .
解析:若对任意x∈R,不等式x2-2x-1≥m2-3m恒成立,则[(x-1)2-2]min≥m2-3m,即m2-3m≤-2,解得1≤m≤2,因为﹁p为真命题,所以m<1或m>2.
答案:(-∞,1)∪(2,+∞)
2023届高考一轮复习讲义(理科)第一章 集合与常用逻辑用语 第1讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第一章 集合与常用逻辑用语 第1讲 高效演练分层突破学案,共4页。
2023届高考一轮复习讲义(理科)第一章 集合与常用逻辑用语 第3讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第一章 集合与常用逻辑用语 第3讲 高效演练分层突破学案,共6页。
2023届高考一轮复习讲义(理科)第一章 集合与常用逻辑用语 第2讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第一章 集合与常用逻辑用语 第2讲 高效演练分层突破学案,共4页。