|学案下载
搜索
    上传资料 赚现金
    2023届高考一轮复习讲义(文科)第九章 平面解析几何 第1讲 高效演练 分层突破学案
    立即下载
    加入资料篮
    2023届高考一轮复习讲义(文科)第九章 平面解析几何    第1讲 高效演练 分层突破学案01
    2023届高考一轮复习讲义(文科)第九章 平面解析几何    第1讲 高效演练 分层突破学案02
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(文科)第九章 平面解析几何 第1讲 高效演练 分层突破学案

    展开
    这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第1讲 高效演练 分层突破学案,共5页。

    1.若直线过点(1,1),(2,1+eq \r(3)),则此直线的倾斜角的大小为( )
    A.30° B.45°
    C.60° D.90°
    解析:选C.设此直线的倾斜角为α,则k=tan α=eq \f(1+\r(3)-1,2-1)=eq \r(3).又a∈[0,π),所以α=60°.故选C.
    2.已知直线l的斜率为eq \r(3),在y轴上的截距为另一条直线x-2y-4=0的斜率的倒数,则直线l的方程为( )
    A.y=eq \r(3)x+2 B.y=eq \r(3)x-2
    C.y=eq \r(3)x+eq \f(1,2) D.y=-eq \r(3)x+2
    解析:选A.因为直线x-2y-4=0的斜率为eq \f(1,2),所以直线l在y轴上的截距为2,所以直线l的方程为y=eq \r(3)x+2.
    3.(2020·黑龙江鹤岗一中期中)已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是( )
    A.1 B.-1
    C.2或1 D.-2或1
    解析:选D.当a=0时,直线方程为y=2,显然不符合题意,当a≠0时,令y=0,得到直线在x轴上的截距是eq \f(2+a,a),令x=0,得到直线在y轴上的截距为2+a,根据题意得eq \f(2+a,a)=2+a,解得a=-2或a=1,故选D.
    4.若eq \f(3π,2)<α<2π,则直线eq \f(x,cs α)+eq \f(y,sin α)=1必不经过( )
    A.第一象限 B.第二象限
    C.第三象限 D.第四象限
    解析:选B.令x=0,得y=sin α<0,令y=0,得x=cs α>0,直线过(0,sin α),(cs α,0)两点,因而直线不经过第二象限.选B.
    5.在等腰三角形MON中,MO=MN,点O(0,0),M(-1,3),点N在x轴的负半轴上,则直线MN的方程为( )
    A.3x-y-6=0 B.3x+y+6=0
    C.3x-y+6=0 D.3x+y-6=0
    解析:选C.因为MO=MN,所以直线MN的斜率与直线MO的斜率互为相反数,所以kMN=-kMO=3,所以直线MN的方程为y-3=3(x+1),即3x-y+6=0,选C.
    6.已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),则BC边上中线所在的直线方程为 .
    解析:BC的中点坐标为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2),-\f(1,2))),所以BC边上中线所在直线方程为eq \f(y-0,-\f(1,2)-0)=eq \f(x+5,\f(3,2)+5),即x+13y+5=0.
    答案:x+13y+5=0
    7.直线l过原点且平分▱ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为 .
    解析:直线l平分▱ABCD的面积,则直线l过BD的中点(3,2),则直线l:y=eq \f(2,3)x.
    答案:y=eq \f(2,3)x
    8.设点A(-1,0),B(1,0),直线2x+y-b=0与线段AB相交,则b的取值范围是 .
    解析:b为直线y=-2x+b在y轴上的截距,如图,当直线y=-2x+b过点A(-1,0)和点B(1,0)时,b分别取得最小值和最大值.所以b的取值范围是[-2,2].
    答案:[-2,2]
    9.已知△ABC的三个顶点分别为A(-3,0),B(2,1),C(-2,3),求:
    (1)BC边所在直线的方程;
    (2)BC边的垂直平分线DE的方程.
    解:(1)因为直线BC经过B(2,1)和C(-2,3)两点,
    所以BC的方程为eq \f(y-1,3-1)=eq \f(x-2,-2-2),
    即x+2y-4=0.
    (2)由(1)知,直线BC的斜率k1=-eq \f(1,2),则直线BC的垂直平分线DE的斜率k2=2.因为BC边的垂直平分线DE经过BC的中点(0,2),
    所以所求直线方程为y-2=2(x-0),
    即2x-y+2=0.
    10.已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:
    (1)过定点A(-3,4);
    (2)斜率为eq \f(1,6).
    解:(1)设直线l的方程为y=k(x+3)+4,它在x轴,y轴上的截距分别是-eq \f(4,k)-3,3k+4,由已知,得(3k+4)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,k)+3))=±6,解得k1=-eq \f(2,3)或k2=-eq \f(8,3).
    故直线l的方程为2x+3y-6=0或8x+3y+12=0.
    (2)设直线l在y轴上的截距为b,则直线l的方程是y=eq \f(1,6)x+b,它在x轴上的截距是-6b,
    由已知,得|-6b·b|=6,
    所以b=±1.
    所以直线l的方程为x-6y+6=0或x-6y-6=0.
    [综合题组练]
    1.直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )
    A.-1<k<eq \f(1,5) B.k>1或k<eq \f(1,2)
    C.k>eq \f(1,5)或k<1 D.k>eq \f(1,2)或k<-1
    解析:选D.设直线的斜率为k,则直线方程为y-2=k(x-1),令y=0,得直线l在x轴上的截距为1-eq \f(2,k),
    则-3<1-eq \f(2,k)<3,解得k>eq \f(1,2)或k<-1.
    2.过直线l:y=x上的点P(2,2)作直线m,若直线l,m与x轴围成的三角形的面积为2,则直线m的方程为 .
    解析:①若直线m的斜率不存在,则直线m的方程为x=2,直线m,直线l和x轴围成的三角形的面积为2,符合题意;②若直线m的斜率k=0,则直线m与x轴没有交点,不符合题意;③若直线m的斜率k≠0,设其方程为y-2=k(x-2),令y=0,得x=2-eq \f(2,k),依题意有eq \f(1,2)×eq \b\lc\|\rc\|(\a\vs4\al\c1(2-\f(2,k)))×2=2,即eq \b\lc\|\rc\|(\a\vs4\al\c1(1-\f(1,k)))=1,解得k=eq \f(1,2),所以直线m的方程为y-2=eq \f(1,2)(x-2),即x-2y+2=0.综上可知,直线m的方程为x-2y+2=0或x=2.
    答案:x-2y+2=0或x=2
    3.已知直线l过点(2,1),且在x,y轴上的截距相等.
    (1)求直线l的一般方程;
    (2)若直线l在x,y轴上的截距不为0,点P(a,b)在直线l上,求3a+3b的最小值.
    解:(1)①截距为0时,k=eq \f(1-0,2-0)=eq \f(1,2),
    所以l:y=eq \f(1,2)x,即x-2y=0;
    ②截距不为0时,设直线方程为eq \f(x,t)+eq \f(y,t)=1,将(2,1)代入,计算得t=3,则直线方程为x+y-3=0.
    综上,直线l的方程为x-2y=0或x+y-3=0.
    (2)由题意得l的方程为x+y-3=0,
    因为点P(a,b)在直线l上,所以a+b=3,
    所以3a+3b≥2eq \r(3a·3b)=2eq \r(3a+b)=6eq \r(3),
    当且仅当a=b=eq \f(3,2)时等号成立,
    所以3a+3b的最小值是6eq \r(3).
    4.(综合型)为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪(如图),另外△EFA内部有一文物保护区不能占用,经测量AB=100 m,BC=80 m,AE=30 m,AF=20 m,应如何设计才能使草坪面积最大?
    解:如图所示,建立平面直角坐标系,则E(30,0),F(0,20),
    所以直线EF的方程为eq \f(x,30)+eq \f(y,20)=1(0≤x≤30).
    易知当矩形草坪的一个顶点在EF上时,可取最大值,
    在线段EF上取点P(m,n),作PQ⊥BC于点Q,PR⊥CD于点R,设矩形PQCR的面积为S,
    则S=|PQ|·|PR|=(100-m)(80-n).
    又eq \f(m,30)+eq \f(n,20)=1(0≤m≤30),
    所以n=20-eq \f(2,3)m.
    所以S=(100-m)eq \b\lc\(\rc\)(\a\vs4\al\c1(80-20+\f(2,3)m))
    =-eq \f(2,3)(m-5)2+eq \f(18 050,3)(0≤m≤30).
    所以当m=5时,S有最大值,这时eq \f(|EP|,|PF|)=5∶1.
    所以当矩形草坪的两边在BC,CD上,一个顶点在线段EF上,且这个顶点分有向线段EF成5∶1时,草坪面积最大.
    相关学案

    2023届高考一轮复习讲义(文科)第九章 平面解析几何 第8讲 第1课时 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第8讲 第1课时 高效演练 分层突破学案,共5页。

    2023届高考一轮复习讲义(文科)第九章 平面解析几何 第3讲 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第3讲 高效演练 分层突破学案,共6页。

    2023届高考一轮复习讲义(文科)第九章 平面解析几何 第6讲 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第6讲 高效演练 分层突破学案,共6页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map