人教版九年级下册第二十九章 投影与视图综合与测试练习
展开
这是一份人教版九年级下册第二十九章 投影与视图综合与测试练习,共7页。
投影与视图—巩固练习【巩固练习】一、选择题
1. 如图所示,身高为1.6米的某学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0米,BC=8.0米,则旗杆的高度是( ) A.6.4米 B.7.0米 C.8.0米 D.9.0米2.如图下列物体的影子,不正确的是( ) 3.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为( )A.3 B.7 C.8 D.11 4.如图所示是一个几何体的实物图,则其主视图是 ( ) 5.如图所示,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于( ) A.4.5米 B.6米 C.7.2米 D.8米 第5题 第6题6.由n个相同的小正方体堆成的几何体,其视图如图所示,则n的最大值是( ) A.18 13.19 C.20 D.21 二、填空题7.如图所示上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲、乙同学相距1米,甲身高1.8米,乙身高1.5米,则甲的影长是________米. 第7题 第8题8.如图所示,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为________m.9.一个圆柱体的轴截面平行于投影面,圆柱体的正投影是边长为4的正方形,则圆柱的表面积为 ;体积为 .10.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个. 11.下图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积是________mm2. 12.如图所法,圆锥的母线长为3,底面半径为1,A为底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短路线长为 . 三、解答题13.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图所示,在同一时间,身高为1.6 m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G; (2)求路灯灯泡的垂直高度GH; (3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下的路程的到B2处时,求其影子B2C2的长;当小明继续走剩下路程的到B3处时,……按此规律继续走下去,当小明走剩下路程的到处时,其影子的长为________m(直接用含n的代数式表示). 14. 已知一纸板的形状为正方形ABCD(如图所示),其边长为10厘米,AD、BC与投影面β平行,AB、CD与投影面不平行,正方形在投影面β上的正投影为A1B1C1D1,若∠ABB1=45°,求投影面A1B1C1D1的面积. 15.如图所示是—个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短的路程. 【答案与解析】一、选择题
1.【答案】C;【解析】由题意得,,即, ∴ 旗杆的高度为8.0米.2.【答案】B;【解析】太阳光线是平行的,故影长与物体高度成正比例,所以A正确.太阳光线画得不平行,所以B错.因为物体在光源两侧,故影子方向不同,所以C正确.因灯光是发散的,故影长与物体高度不成比例且物体在光源同侧,影子方向相同,所以D正确.规律:(1)太阳光线是平行的,故太阳光下的影子都与物体高度成比例;灯光光线是发散的,灯光下的影子与物高不一定成比例. (2)同一时刻,太阳光下的影子总是在同一方向;而灯光下的影子可能在同一方向,也可能在不同方向.3.【答案】B;【解析】可在一小正方体各个面上按图示要求标上数字,也可发挥空间分析与想象力作出判断,a=3,b=4,∴ a+b=7.4.【答案】C;【解析】观察一个物体,主视图是从正面看到的图形,本题中物体由上下两个部分组成,上面的物体从正面看到的是一个等腰梯形,下面是一个长方体,从正面看到的是一个长方形,再由上面的物体放置的位置特征可知选C.5.【答案】B;【解析】如图所示,GC⊥BC,AB⊥BC,∴ GC∥AB. ∴ △GCD∽△ABD,∴ . 设BC=x,则.同理,得. ∴ x=3.∴ . ∴ AB=6.6.【答案】A;【解析】这道题在俯视图上操作,参照主视图从左到右,最左边一列有3层,每个方格上最大标上3,中间一列有2层,每个方格上最大标上2,最右边一列有3层,每个方格上最大标上3,共计18,即n的最大值是18(如图所示). 二、填空题7.【答案】6;【解析】△AED∽△ABC,∴ ,即.∴ AD=5.∴ AC=CD+AD=6.8.【答案】4;【解析】首先将实际问题转化为几何模型,如图所示,已知∠EDF=90°,DG⊥EF于G,EG=2,GF=8,求DG.易证△DEG∽△FDG, ∴ . 即DG2=2×8=16 ∴ DG=4(m). 9.【答案】; 【解析】由题意得底面半径,母线,∴ ,∴ ,. 10.【答案】5;【解析】将主视图与左视图反映在俯视图中可能的情况为.11.【答案】200; 【解析】由三视图可知立体图形由上下两个长方体构成,上面长方体长4、宽2、高4,下面长方体长6,宽8、高2,去掉重合部分,表面积为:6×8×2+8×2×2+6×2×2+4×4×2+4×2×2=200.12.【答案】; 【解析】圆锥的侧面展开图为扇形,如图所示.由题意扇形的弧长即为圆锥底面周长,由弧长公式知,∴ n=120°.即∠AOA′=120°,过O作OH⊥AA′于H,则∠AOH=60°,在Rt△AOH中,,∴ . 三、解答题13.【答案与解析】(1)如图所示:(2)由题意得△ABC∽△GHC,∴ ,∴ ,∴ GH=4.8m. 即路灯灯泡的垂直高度为4.8 m. (3)∵ △A1B1C1∽△GHC1,∴ . 设B1C1长为x m,则, 解得,即m.同理,解得B2C2=1m;…; 由此可得当小明走剩下路程的到处时,其影子的长为m. 求物体正投影的影长或某个面的正投影的面积. 14.【答案与解析】如图所示,过A作AH⊥BB1于H, ∵ ∠ABB1=45°,∴ △ABH是等腰直角三角形, ∴ AH=AB=厘米,∴ A1B1=AH=厘米. ∵ A1D1=AD=10厘米, ∴ 矩形A1B1C1D1的面积=A1B1·A1D1=×10=(平方厘米). 答:投影面A1B1C1D1的面积是平方厘米. 15.【答案与解析】 (1)圆锥; (2)表面积(cm2).(3)如图所示,将圆锥侧面展开,线段BD为所求的最短路程,由条件得,∠BAB′=120°,C为的中点,∴ ,在Rt△ADB中,AB=6,∠BAD=60°,∴ BD=6×sin60°=(cm).
相关试卷
这是一份初中数学人教版九年级下册29.1 投影优秀复习练习题,共5页。试卷主要包含了下列各种现象属于中心投影的是,人从路灯下走过时,影子的变化是,太阳发出的光照在物体上是,下列现象是物体的投影的是等内容,欢迎下载使用。
这是一份人教版九年级数学下册练习:第二十九章 投影与视图,共26页。试卷主要包含了1 投影,平行投影中的光线是等内容,欢迎下载使用。
这是一份人教版九年级数学练习:第二十九章《投影与视图》单元测试卷,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。