- 专题13.19 课题-最短路径(将军饮马问题)(专项练习)(培优篇)-2021-2022学年八年级数学上册基础知识专项讲练(人教版) 试卷 7 次下载
- 专题13.20《轴对称》中考真题专练(基础篇)(专项练习)-2021-2022学年八年级数学上册基础知识专项讲练(人教版) 试卷 5 次下载
- 专题13.22《轴对称》中考真题专练(培优篇)(专项练习)-2021-2022学年八年级数学上册基础知识专项讲练(人教版) 试卷 5 次下载
- 专题14.1 同底数幂的乘法(知识讲解)-2021-2022学年八年级数学上册基础知识专项讲练(人教版) 其他 6 次下载
- 专题14.2 同底数幂的乘法(专项练习)-2021-2022学年八年级数学上册基础知识专项讲练(人教版) 试卷 7 次下载
专题13.21《轴对称》中考真题专练(巩固篇)(专项练习)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)
展开专题13.21 《轴对称》中考真题专练(巩固篇)(专项练习)
一、单选题
1.(2019·湖北恩施·中考真题)在下列图形中是轴对称图形的是( )
A. B.
C. D.
2.(2020·内蒙古通辽·中考真题)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )
A. B.
C. D.
3.(2019·广西梧州·中考真题)如图,是的边的垂直平分线,为垂足,交于点,且,则的周长是( )
A.12 B.13 C.14 D.15
4.(2020·青海中考真题)等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )
A.55°,55° B.70°,40°或70°,55°
C.70°,40° D.55°,55°或70°,40°
5.(2021·辽宁盘锦·中考真题)如图,已知直线AB和AB上的一点C,过点C作直线AB的垂线,步骤如下:
第一步:以点C为圆心,以任意长为半径作弧,交直线AB于点D和点E;
第二步:分别以点D和点E为圆心,以为半径作弧,两弧交于点F;
第三步:作直线CF,直线CF即为所求.
下列关于的说法正确的是( )
A.≥ B.≤ C. D.
6.(2021·河北中考真题)如图,直线,相交于点.为这两直线外一点,且.若点关于直线,的对称点分别是点,,则,之间的距离可能是( )
A.0 B.5
C.6 D.7
7.(2019·湖南长沙·中考真题)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( )
A.20° B.30° C.45° D.60°
8.(2020·湖南湘西·中考真题)已知,作的平分线,在射线上截取线段,分别以O、C为圆心,大于的长为半径画弧,两弧相交于E,F.画直线,分别交于D,交于G.那么,一定是( )
A.锐角三角形 B.钝角三角形 C.等腰三角形 D.直角三角形
9.(2019·吉林长春·中考真题)如图,在中,为钝角.用直尺和圆规在边上确定一点.使,则符合要求的作图痕迹是( )
A. B.
C. D.
10.(2019·四川内江·中考真题)如图,将沿着过的中点的直线折叠,使点落在边上的处,称为第一次操作,折痕到的距离为;还原纸片后,再将沿着过的中点的直线折叠,使点落在边上的处,称为第二次操作,折痕到的距离记为;按上述方法不断操作下去……经过第次操作后得到折痕,到的距离记为.若,则的值为( )
A. B. C. D.
11.(2019·河北中考真题)如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为( )
A. B. C. D.
12.(2021·贵州黔东南·中考真题)将一副直角三角板按如图所示的方式放置,使用角的三角板的直角边和含角的三角板的直角边垂直,则∠1的度数为( )
A. B. C. D.
13.(2021·青海)已知,是等腰三角形的两边长,且,满足,则此等腰三角形的周长为( ).
A.8 B.6或8 C.7 D.7或8
14.(2018·新疆中考真题)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为( )
A.6cm B.4cm C.3cm D.2cm
15.(2020·四川绵阳·中考真题)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=( )
A.16° B.28° C.44° D.45°
16.(2020·广西玉林·中考真题)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个( )
A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等边三角形
17.(2020·四川宜宾·中考真题)如图,都是等边三角形,且B,C,D在一条直线上,连结,点M,N分别是线段BE,AD上的两点,且,则的形状是( )
A.等腰三角形 B.直角三角形
C.等边三角形 D.不等边三角形
18.(2020·四川南充·中考真题)如图,在等腰三角形ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=( )
A. B. C.a-b D.b-a
二、填空题
19.(2020·山东潍坊·中考真题)如图,在中,,,垂直平分,垂足为Q,交于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边于点D,E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;⑤作射线.若与的夹角为,则________°.
20.(2020·江苏南京·中考真题)如图,线段AB、BC的垂直平分线、相交于点,若39°,则=__________.
21.(2019·山东中考真题)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),的度数是________.
22.(2017·黑龙江大庆·中考真题)若点,关于轴对称,则____________..
23.(2021·广东广州·中考真题)如图,在中,,,点D是边AB上一点,点B关于直线CD的对称点为,当时,则的度数为________.
24.(2021·湖南娄底·中考真题)如图,中,是上任意一点,于点于点F,若,则________.
25.(2021·广东深圳·中考真题)如图,在中,D,E分别为,上的点,将沿折叠,得到,连接,,,若,,,则的长为__________.
26.(2021·江苏南京·中考真题)如图,在四边形中,.设,则______(用含的代数式表示).
27.(2021·浙江绍兴·中考真题)如图,在中,,,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则的度数是_______.
28.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(是正五边形的五个顶点),则图中的度数是_______度.
29.(2020·辽宁铁岭·中考真题)如图,以为边,在的同侧分别作正五边形和等边,连接,则的度数是____________.
30.(2020·湖北黄石·中考真题)匈牙利著名数学家爱尔特希(P. Erdos,1913-1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则的度数是_____.
31.(2020·陕西中考真题)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是_____.
32.(2020·湖北中考真题)如图,D是等边三角形外一点.若,连接,则的最大值与最小值的差为_____.
33.(2020·江西中考真题)如图,平分,,的延长线交于点,若,则的度数为__________.
34.(2020·山东滨州·中考真题)在等腰ABC中,AB=AC,∠B=50°,则∠A的大小为________.
35.(2020·浙江台州·中考真题)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是_____ .
36.(2019·贵州黔东南·中考真题)如图,以的顶点为圆心,长为半径画弧,交边于点,连接.若,,则=___.
37.(2019·辽宁丹东·中考真题)如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是_____.
三、解答题
38.(2021·湖北宜昌·中考真题)如图,在中,,.
(1)通过观察尺规作图的痕迹,可以发现直线是线段的__________,射线是的__________;
(2)在(1)所作的图中,求的度数.
39.(2021·福建)如图,在中,.线段是由线段平移得到的,点F在边上,是以为斜边的等腰直角三角形,且点D恰好在的延长线上.
(1)求证:;
(2)求证:.
40.(2011·辽宁丹东·中考真题)如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连接EG,EF.
(1)求证:BG=CF.
(2)请你猜想BE+CF与EF的大小关系,并说明理由.
41.(2020·山东烟台·中考真题)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
(问题解决)
(1)如图1,若点D在边BC上,求证:CE+CF=CD;
(类比探究)
(2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.
42.(2020·黑龙江牡丹江·中考真题)在等腰中,,点D,E在射线上,,过点E作,交射线于点F.请解答下列问题:
(1)当点E在线段上,是的角平分线时,如图①,求证:;(提示:延长,交于点M.)
(2)当点E在线段的延长线上,是的角平分线时,如图②;当点E在线段的延长线上,是的外角平分线时,如图③,请直接写出线段,,之间的数量关系,不需要证明;
(3)在(1)、(2)的条件下,若,则___________.
43.(2020·黑龙江哈尔滨·中考真题)已知,在中,,点D,点E在BC上,,连接.
(1)如图1,求证:;
(2)如图2,当时,过点B作,交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.
44.(2020·四川凉山·中考真题)如图,点P、Q分别是等边边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.
(1)如图1,连接AQ、CP求证:
(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数
(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
45.(2019·贵州安顺·中考真题)(1)如图①,在四边形中,,点是的中点,若是的平分线,试判断,,之间的等量关系.
解决此问题可以用如下方法:延长交的延长线于点,易证得到,从而把,,转化在一个三角形中即可判断.
,,之间的等量关系________;
(2)问题探究:如图②,在四边形中,,与的延长线交于点,点是的中点,若是的平分线,试探究,,之间的等量关系,并证明你的结论.
参考答案
1.B
【分析】根据轴对称图形的概念求解.
【详解】
A.不是轴对称图形,故本选项不符合题意,
B.是轴对称图形,故本选项符合题意,
C.不是轴对称图形,故本选项不符合题意,
D.是不轴对称图形,故本选项不符合题意.
故选B.
【点拨】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.C
【分析】根据三角形外心的定义得到三角形外心为三边的垂直平分线的交点,然后利用基本作图对各选项进行判断.
【详解】
三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.
故选C.
【点拨】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.
3.B
【分析】直接利用线段垂直平分线的性质得出,进而得出答案.
【详解】
解:∵是的边的垂直平分线,
∴,
∵,
∴的周长是:.
故选B.
【点拨】考核知识点:线段垂直平分线.理解线段垂直平分线性质是关键.
4.D
【分析】先根据等腰三角形的定义,分的内角为顶角和的内角为底角两种情况,再分别根据三角形的内角和定理即可得.
【详解】
(1)当的内角为这个等腰三角形的顶角
则另外两个内角均为底角,它们的度数为
(2)当的内角为这个等腰三角形的底角
则另两个内角一个为底角,一个为顶角
底角为,顶角为
综上,另外两个内角的度数分别是或
故选:D.
【点拨】本题考查了等腰三角形的定义、三角形的内角和定理,根据等腰三角形的定义,正确分两种情况讨论是解题关键.
5.C
【分析】根据过直线外一点作已知直线的垂线的步骤,结合三角形三边关系判断即可.
【详解】
解:由作图可知,分别以点和点为圆心,以为半径作弧,两弧交于点,此时,
故选:.
【点拨】本题考查作图基本作图,解题的关键是理解题意,灵活运用所学知识解决问题.
6.B
【分析】连接根据轴对称的性质和三角形三边关系可得结论.
【详解】
解:连接,如图,
∵是P关于直线l的对称点,
∴直线l是的垂直平分线,
∴
∵是P关于直线m的对称点,
∴直线m是的垂直平分线,
∴
当不在同一条直线上时,
即
当在同一条直线上时,
故选:B
【点拨】此题主要考查了轴对称变换,熟练掌握轴对称变换的性质是解答此题的关键
7.B
【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.
【详解】
在△ABC中,∵∠B=30°,∠C=90°,
∴∠BAC=180°-∠B-∠C=60°,
由作图可知MN为AB的中垂线,
∴DA=DB,
∴∠DAB=∠B=30°,
∴∠CAD=∠BAC-∠DAB=30°,
故选B.
【点拨】本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.
8.C
【分析】根据题意知EF垂直平分OC,由此证明△OMD≌△ONG,即可得到OD=OG得到答案.
【详解】
如图,连接CD、CG,
∵分别以O、C为圆心,大于的长为半径画弧,两弧相交于E,F
∴EF垂直平分OC,
设EF交OC于点N,
∴∠ONE=∠ONF=90°,
∵OM平分,
∴∠NOD=∠NOG,
又∵ON=ON,
∴△OMD≌△ONG,
∴OD=OG,
∴△ODG是等腰三角形,
故选:C.
【点拨】此题考查基本作图能力:角平分线的做法及线段垂直平分线的做法,还考查了全等三角形的判定定理及性质定理,由此解答问题,根据题意得到EF垂直平分OC是解题的关键.
9.B
【分析】由且知,据此得,由线段的中垂线的性质可得答案.
【详解】
解:∵且,
∴,
∴,
∴点是线段中垂线与的交点,
故选B
【点拨】考核知识点:线段垂直平分线.理解线段垂直平分线性质是关键.
10.C
【分析】根据中点的性质及折叠的性质可得DA=DA'=DB,从而可得∠ADA'=2∠B,结合折叠的性质可得∠ADA'=2∠ADE,可得∠ADE=∠B,继而判断DE∥BC,得出DE是△ABC的中位线,证得AA⊥BC,得到AA=2,求出=2-1,同理,于是经过第n次操作后得到的折痕
【详解】
∵是的中点,折痕到的距离为
∴点到的距离,
∵是的中点,折痕到的距离记为,
∴点到的距离,
同理:,
……
故选C.
【点拨】此题考查翻折变换(折叠问题),解题关键在于找到规律
11.C
【分析】由等边三角形有三条对称轴可得答案.
【详解】
如图所示,n的最小值为3.
故选C.
【点拨】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.
12.D
【分析】由三角板的特征可得∠B=45°,∠E=30°,∠EFD=90°,利用三角形的外角的性质及对顶角的性质可求解∠AGE的度数,再利用三角形外角的性质可求解∠1的度数.
【详解】
解:由题意得△ABC,△DEF为直角三角形,∠B=45°,∠E=30°,∠EFD=90°,
∴∠AGE=∠BGF=45°,
∵∠1=∠E+∠AGE,
∴∠1=30°+45°=75°,
故选:D.
【点拨】本题主要考查三角形外角的性质,等腰直角三角形,求解∠AGE的度数是解题的关键.
13.D
【分析】先根据非负数的性质列式求出a、b的值,再分a的值是腰长与底边两种情况讨论求解.
【详解】
解:∵,
∴
解得,
①2是腰长时,三角形的三边分别为2、2、3,能组成三角形,周长=2+2+3=7;
②2是底边时,三角形的三边分别为2、3、3,能组成三角形,周长=2+3+3=8,
所以该等腰三角形的周长为7或8.
故选:D.
【点拨】本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出a、b的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.
14.D
【详解】
分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC-BE,代入数据进行计算即可得解.
详解:∵沿AE对折点B落在边AD上的点B1处,
∴∠B=∠AB1E=90°,AB=AB1,
又∵∠BAD=90°,
∴四边形ABEB1是正方形,
∴BE=AB=6cm,
∴CE=BC-BE=8-6=2cm.
故选D.
点睛:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.
15.C
【分析】延长,交于,根据等腰三角形的性质得出,根据平行线的性质得出,
【详解】
解:延长,交于,
是等腰三角形,,
,
,
,
,
,
故选:.
【点拨】本题考查了等腰三角形的性质,平行线的性质,三角形外角的性质,熟练掌握性质定理是解题的关键.
16.A
【分析】先根据方位角的定义分别可求出,再根据角的和差、平行线的性质可得,,从而可得,然后根据三角形的内角和定理可得,最后根据等腰直角三角形的定义即可得.
【详解】
由方位角的定义得:
由题意得:
由三角形的内角和定理得:
是等腰直角三角形
即A,B,C三岛组成一个等腰直角三角形
故选:A.
【点拨】本题考查了方位角的定义、平行线的性质、三角形的内角和定理、等腰直角三角形的定义等知识点,掌握理解方位角的概念是解题关键.
17.C
【分析】先证明,得到,根据已知条件可得,证明,得到,即可得到结果;
【详解】
∵都是等边三角形,
∴,,,
∴,
∴,
在和中,
,
∴,
∴,,
又∵,
∴,
在和中,
,
∴,
∴,,
∴,
∴是等边三角形.
故答案选C.
【点拨】本题主要考查了等边三角形的性质与判定,正确分析题目条件是解题的关键.
18.C
【分析】根据等腰三角形的性质和判定得出BD=BC=AD,进而解答即可.
【详解】
解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,
∴∠ABC=∠C=2∠ABD=72°,
∴∠ABD=36°=∠A,
∴BD=AD,
∴∠BDC=∠A+∠ABD=72°=∠C,
∴BD=BC,
∵AB=AC=a,BC=b,
∴CD=AC-AD=a-b,
故选:C.
【点拨】此题考查等腰三角形的性质,关键是根据等腰三角形的性质和判定得出BD=BC=AD解答.
19.55°.
【分析】根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠2=35°,由线段垂直平分线可得△AQM是直角三角形,故可得∠1+∠2=90°,从而可得∠1=55°,最后根据对顶角相等求出.
【详解】
如图,
∵△ABC是直角三角形,∠C=90°,
,
,
,
∵是的平分线,
,
是的垂直平分线,
是直角三角形,
,
,
∵∠α与∠1是对顶角,
.
故答案为:55°.
【点拨】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.
20.78
【分析】如图,利用线段垂直平分线的性质结合三角形外角性质得到∠AOC=∠2+∠3=2(∠A+∠C),再利用垂直的定义结合三角形外角性质得到∠AOG =51-∠A,∠COF =51-∠C,利用平角的定义得到∠AOG+∠2+∠3+∠COF+∠1=180,计算即可求解.
【详解】
如图,连接BO并延长,
∵、分别是线段AB、BC的垂直平分线,
∴OA=OB,OB=OC,∠ODG=∠OEF=90,
∴∠A=∠ABO,∠C=∠CBO,
∴∠2=2∠A,∠3=2∠C,∠OGD=∠OFE=90-39=51,
∴∠AOC=∠2+∠3=2(∠A+∠C),
∵∠OGD=∠A+∠AOG,∠OFE=∠C+∠COF,
∴∠AOG =51-∠A,∠COF =51-∠C,
而∠AOG+∠2+∠3+∠COF+∠1=180,
∴51-∠A+2∠A+2∠C+51-∠C+39=180,
∴∠A+∠C=39,
∴∠AOC=2(∠A+∠C)=78,
故答案为:78.
【点拨】本题考查了线段垂直平分线的性质,三角形外角的性质,垂直的定义,平角的定义,注意掌握辅助线的作法,注意掌握整体思想与数形结合思想的应用.
21.45°
【分析】根据折叠过程可知,在折叠过程中角一直是轴对称的折叠.
【详解】
在折叠过程中角一直是轴对称的折叠,
故答案为45°
【点拨】考核知识点:轴对称.理解折叠的本质是关键.
22.4
【详解】
根据关于x轴对称的点的坐标特点,横坐标不变,纵坐标变为相反数,可知b=3,a-2=-a,解得a=1,因此可求得a+b=4.
故答案为4.
23.
【分析】如图,连接,根据轴对称的性质及全等三角形的判定与性质可得,,并由平行线的性质可推出,最后由等腰三角形的性质及三角形内角和定理即可求得结果.
【详解】
解:如图,连接
∵点B关于直线CD的对称点为,
∴,.
∵,
∴.
∴,.
∵,
∴.
∵,
∴.
∴.
∵.
∴.
∴.
故答案为:.
【点拨】本题考查了轴对称、等腰三角形及平行线的性质等知识,熟练掌握轴对称、等腰三角形的性质及全等三角形的判定与性质是解题的关键.
24.1
【分析】将的面积拆成两个三角形面积之和,即可间接求出的值.
【详解】
解:连接,如下图:
于点于点,
,
,
,
故答案是:1.
【点拨】本题考查了等腰三角形的性质,利用面积法解决两边之和问题,解题的关键是:将的面积拆成两个三角形面积之和来解答.
25.
【分析】延长,交于点G,由折叠,可知,可得,延长,,交于点M,结合,可得,,进而即可求解.
【详解】
解:如图,延长,交于点G,
设
由折叠,可知,
∵,
∴,
∴,
延长,,交于点M,
∵,
∴,,
∴,
∵,,
∴,,
∴.
【点拨】本题主要考查折叠的性质,三角形外角的性质,平行线的判定和性质,等腰三角形的判定和性质,添加合适的辅助线,构造等腰三角形,是解题的关键.
26.
【分析】由等腰的性质可得:∠ADB=,∠BDC=,两角相加即可得到结论.
【详解】
解:在△ABD中,AB=BD
∴∠A=∠ADB=
在△BCD中,BC=BD
∴∠C=∠BDC=
∵
∴
=
=
=
=
故答案为:.
【点拨】此题主要考查了等腰三角形的性质和三角形内角和定理,分别求出∠ADB=,∠BDC=是解答本题的关键.
27.或
【分析】分①点P在BC的延长线上,②点P在CB的延长线上两种情况,再利用等腰三角形的性质即可得出答案.
【详解】
解:①当点P在BC的延长线上时,如图
∵,,
∴
∴
∵以点C为圆心,CA长为半径作弧,交直线BC于点P,
∴AC=PC
∴
∵
∴
∴
②当点P在CB的延长线上时,如图
由①得,
∵AC=PC
∴
∴
故答案为:或
【点拨】本题主要考查了等腰三角形的性质,分类讨论不重不漏是解题的关键.
28.36
【分析】根据题意,得五边形(是正五边形的五个顶点)为正五边形,且;根据多边形内角和性质,得正五边形内角和,从而得;再根据补角、等腰三角形、三角形内角和性质计算,即可得到答案.
【详解】
∵正五角星(是正五边形的五个顶点)
∴五边形(是正五边形的五个顶点)为正五边形,且
∴正五边形内角和为:
∴
∴
∵
∴
∴
故答案为:36.
【点拨】本题考查了正多边形、多边形内角和、补角、等腰三角形、三角形内角和的知识;解题的关键是熟练掌握正多边形、多边形内角和、等腰三角形、三角形内角和的性质,从而完成求解.
29.66°
【分析】由是正五边形可得AB=AE以及∠EAB的度数,由△ABF是等边三角形可得AB=AF以及∠FAB的度数,进而可得AE=AF以及∠EAF的度数,进一步即可根据等腰三角形的性质和三角形的内角和定理求出答案.
【详解】
解:∵五边形是正五边形,
∴AB=AE,∠EAB=108°,
∵△ABF是等边三角形,
∴AB=AF,∠FAB=60°,
∴AE=AF,∠EAF=108°-60°=48°,
∴∠EFA=.
故答案为:66°.
【点拨】本题考查了正多边形的内角问题、等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,属于常考题型,熟练掌握上述基本知识是解题的关键.
30.18°
【分析】先证明△AOB≌△BOC≌△COD,得出∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,然后求出正五边形每个角的度数为108°,从而可得∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,∠AOB=∠BOC=∠COD=72°,可计算出∠AOD=144°,根据OA=OD,即可求出∠ADO.
【详解】
∵这个五边形由正五边形的任意四个顶点及正五边形的中心构成,
∴根据正五边形的性质可得OA=OB=OC=OD,AB=BC=CD,
∴△AOB≌△BOC≌△COD,
∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,
∵正五边形每个角的度数为:=108°,
∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,
∴∠AOB=∠BOC=∠COD=(180°-2×54°)=72°,
∴∠AOD=360°-3×72°=144°,
∵OA=OD,
∴∠ADO=(180°-144°)=18°,
故答案为:18°.
【点拨】本题考查了正多边形的内角,正多边形的性质,等腰三角形的性质,全等三角形的判定和性质,求出∠AOB=∠BOC=∠COD=72°是解题关键.
31.144°.
【分析】根据正五边形的性质和内角和为540°,求得每个内角的度数为108°,再结合等腰三角形和邻补角的定义即可解答.
【详解】
解:∵五边形ABCDE是正五边形,
∴∠C==108°,BC=DC,
∴∠BDC==36°,
∴∠BDM=180°﹣36°=144°,
故答案为:144°.
【点拨】本题考查了正五边形的性质,正多边形的内角,等腰三角形的性质和邻补角的定义,求出正五边形的内角是解题关键.
32.12
【分析】以CD为边向外作等边三角形CDE,连接BE,可证得△ECB≌△DCA从而得到BE=AD,再根据三角形的三边关系即可得出结论.
【详解】
解:如图1,以CD为边向外作等边三角形CDE,连接BE,
∵CE=CD,CB=CA,∠ECD=∠BCA=60°,
∴∠ECB=∠DCA,
∴△ECB≌△DCA(SAS),
∴BE=AD,
∵DE=CD=6,BD=8,
∴8-6
故答案为:12
【点拨】本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD转化为BE从而求解,是一道较好的中考题.
33.
【分析】如图,连接,延长与交于点利用等腰三角形的三线合一证明是的垂直平分线,从而得到 再次利用等腰三角形的性质得到:从而可得答案.
【详解】
解:如图,连接,延长与交于点
平分,,
是的垂直平分线,
故答案为:
【点拨】本题考查的是等腰三角形的性质,掌握等腰三角形的三线合一是解题的关键.
34.
【分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.
【详解】
解:∵AB=AC,∠B=50°,
∴∠C=∠B=50°,
∴∠A=180°-2×50°=80°.
故答案为:80°.
【点拨】本题考查了等腰三角形的性质,解题的关键是掌握等腰三角形两底角相等的性质.
35.6
【分析】先说明△DEF是等边三角形,再根据E,F是边BC上的三等分求出BC的长,最后求周长即可.
【详解】
解:∵等边三角形纸片ABC
∴∠B=∠C=60°
∵DE∥AB,DF∥AC
∴∠DEF=∠DFE=60°
∴△DEF是等边三角形
∴DE=EF=DF
∵E,F是边BC上的三等分点,BC=6
∴EF=2
∴DE=EF=DF=2
∴△DEF= DE+EF+DF=6
故答案为6.
【点拨】本题考查了等边三角形的判定和性质、三等分点的意义,灵活应用等边三角形的性质是正确解答本题的关键.
36.34
【分析】根据三角形内角和定理得,根据等腰三角形两底角相等得,进而根据角的和差得出.
【详解】
∵,
∴
∵
∴
∴
故答案为:34.
【点拨】本题考查了三角形的角度问题,掌握三角形内角和定理、等腰三角形两底角相等的性质、角的和差关系是解题的关键.
37.3
【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠DAB=∠B,然后根据角平分线的定义与直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出BD,然后求解即可.
【详解】
解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,
∴CD=DE=1,
∵DE是AB的垂直平分线,
∴AD=BD,
∴∠B=∠DAB,
∵∠DAB=∠CAD,
∴∠CAD=∠DAB=∠B,
∵∠C=90°,
∴∠CAD+∠DAB+∠B=90°,
∴∠B=30°,
∴BD=2DE=2,
∴BC=BD+CD=1+2=3,
故答案为3.
【点拨】本题考查了角平分线的定义和性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,属于基础题,熟记性质是解题的关键.
38.(1)垂直平分线,角平分线;(2)25°
【分析】(1)根据图形结合垂直平分线、角平分线的作法即可得到答案;
(2)根据垂直平分线的性质及等腰三角形的性质即可得到,再结合三角形的内角和便能求得,,再根据角平分线的定义即可得到答案.
【详解】
解:(1)由图可知:直线是线段的垂直平分线,射线是的角平分线,
故答案为:垂直平分线,角平分线;
(2)∵是线段的垂直平分线,
∴,
∴,
∵,,
∴,
∴.
∵射线是的平分线,
∴.
【点拨】本题考查了垂直平分线、角平分线的作法以及它们的性质,等腰三角形的性质,三角形的内角和,熟练掌握垂直平分线、角平分线的性质是解决本题的关键.
39.(1)见解析;(2)见解析
【分析】(1)通过两角和等于,然后通过等量代换即可证明;
(2)通过平移的性质,证明三角形全等,得到对应边相等,通过等量代换即可证明.
【详解】
证明:(1)在等腰直角三角形中,,
∴.
∵,
∴,
∴.
(2)连接.
由平移的性质得.
∴,
∴,
∴.
∵是等腰直角三角形,
∴.
由(1)得,
∴,
∴,∴.
【点拨】本小题考查平移的性质、直角三角形和等腰三角形的性质、全等三角形的判定和性质,解题的关键是:正确添加辅助线、熟练掌握平移的性质和全等三角形的判定与性质.
40.(1)见解析;(2)BE+CF>EF,理由见解析
【分析】(1)求出∠C=∠GBD,BD=DC,根据ASA证出△CFD≌△BGD即可.
(2)根据全等得出BG=CF,根据三角形三边关系定理求出即可.
【详解】
解:(1)证明:∵BG∥AC,
∴∠C=∠GBD,
∵D是BC的中点,
∴BD=DC,
在△CFD和△BGD中
,
∴△CFD≌△BGD,
∴BG=CF.
(2)BE+CF>EF,
理由如下:
∵△CFD≌△BGD,
∴CF=BG,
在△BGE中,BG+BE>EG,
∵△CFD≌△BGD,
∴GD=DF,ED⊥GF,
∴EF=EG,
∴BE+CF>EF.
【点拨】本题考查了全等三角形的性质和判定,平行线的性质,线段垂直平分线性质,三角形三边关系定理的应用,主要考查学生的推理能力.
41.(1)见解析;(2)FC=CD+CE,见解析
【分析】(1)在CD上截取CH=CE,易证△CEH是等边三角形,得出EH=EC=CH,证明△DEH≌△FEC(SAS),得出DH=CF,即可得出结论;
(2)过D作DG∥AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出△GCD为等边三角形,则DG=CD=CG,证明△EGD≌△FCD(SAS),得出EG=FC,即可得出FC=CD+CE.
【详解】
(1)证明:在CD上截取CH=CE,如图1所示:
∵△ABC是等边三角形,
∴∠ECH=60°,
∴△CEH是等边三角形,
∴EH=EC=CH,∠CEH=60°,
∵△DEF是等边三角形,
∴DE=FE,∠DEF=60°,
∴∠DEH+∠HEF=∠FEC+∠HEF=60°,
∴∠DEH=∠FEC,
在△DEH和△FEC中,
,
∴△DEH≌△FEC(SAS),
∴DH=CF,
∴CD=CH+DH=CE+CF,
∴CE+CF=CD;
(2)解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:
∵△ABC是等边三角形,
∴∠A=∠B=60°,
过D作DG∥AB,交AC的延长线于点G,如图2所示:
∵GD∥AB,
∴∠GDC=∠B=60°,∠DGC=∠A=60°,
∴∠GDC=∠DGC=60°,
∴△GCD为等边三角形,
∴DG=CD=CG,∠GDC=60°,
∵△EDF为等边三角形,
∴ED=DF,∠EDF=∠GDC=60°,
∴∠EDG=∠FDC,
在△EGD和△FCD中,
,
∴△EGD≌△FCD(SAS),
∴EG=FC,
∴FC=EG=CG+CE=CD+CE.
【点拨】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.
42.(1)见解析;(2)BC=AE+CF或AE=CF+BC;(3)18或6.
【分析】(1)延长,交于点M.利用AAS证明,得到ME=BC,并利用角平分线加平行的模型证明CF=MF,AE=EF,从而得证;
(2)延长,EF交于点M.类似于(1)的方法可证明当点E在线段的延长线上,是的角平分线时,BC=AE+CF,当点E在线段的延长线上,是的外角平分线时,AE=CF+BC;
(3)先求出AE,AB,即可利用线段的和差求出答案.
【详解】
(1)如图①,延长,交于点M.
∵,
∴∠A=∠BCA=∠EFA,
∴AE=EF
∴
∴∠MED=∠B, ∠M=∠BCD
又∵∠FCM=∠BCM,
∴∠M=∠FCM
∴CF=MF
又∵BD=DE
∴
∴ME=BC
∴CF=MF=ME+EF=BC+AE
即AE+BC=CF;
(2)当点E在线段的延长线上,是的角平分线时,BC=AE+CF,
如图②,延长,EF交于点M.
由①同理可证,
∴ME=BC
由①证明过程同理可得出MF=CF,AE=EF,
∴BC=ME=EF+MF=AE+CF;
当点E在线段的延长线上,是的外角平分线时,AE=CF+BC.
如图③,延长交EF于点M,
由上述证明过程易得,BC=EM,
CF=FM,
又∵AB=BC,
∴∠ACB=∠CAB=∠FAE
∵
∴∠F=∠FCB,
∴EF=AE,
∴AE=FE=FM+ME=CF+BC
(3)CF=18或6
当DE=2AE=6时,图①中,由(1)得:AE=3,BC=AB=BD+DE+AE=15,
∴CF=AE+BC=3+15=18;
图②中,由(2)得:AE=AD=3,BC=AB=BD+AD=9,
∴CF=BC-AE=9-3=6;
图③中,DE小于AE,故不存在.
故答案为18或6.
【点拨】本题是考查了角平分线、平行线和等腰三角形及全等三角形的综合题,关键是添加恰当的辅助线,构建角平分线加平行的模型,是一道较好的中考真题.
43.(1)证明见解析;(2)、、、.
【分析】(1)可得,进而利用SAS证明,即可得出结论;
(2)由已知计算出图形中角的度数,由等角对等边即可得出结论.
【详解】
(1)证明:如图1,
,
,
在和中,
,
∴(SAS),
∴;
(2)顶角为45°的等腰三角形有以下四个:、、、.
证明:∵,,
∴,,
∵,,即:是等腰三角形,;
∴,
∴,
∴,
∴,
∴、即:、是等腰三角形,,
∵
∴∠DBF=∠C=45°,,
又∵,
∴,
∴、即:是等腰三角形,.
【点拨】本题考察了等腰三角形性质和判定及全等三角形性质和判定,掌握等腰三角形性质和判定是解题关键.
44.(1)证明见解析;(2)不变;60°;(3)不变;120°.
【分析】(1)根据点P、点Q以相同的速度,同时从点A、点B出发,可得BQ=AP,结合等边三角形的性质证全等即可;
(2)由(1)中全等可得∠CPA=∠AQB,再由三角形内角和定理即可求得∠AMP的度数,再根据对顶角相等可得的度数;
(3)先证出,可得∠Q=∠P,再由对顶角相等,进而得出∠QMC=∠CBP=120°.
【详解】
解:(1)证明:∵三角形ABC为等边三角形,
∴AB=AC,∠ABC=∠CAB=60°,
∵点P、点Q以相同的速度,同时从点A、点B出发,
∴BQ=AP,
在△ABQ与△CAB中,
∴.
(2)角度不变,60°,理由如下:
∵
∴∠CPA=∠AQB,
在△AMP中,
∠AMP=180°-(∠MAP+∠CPA)=180°-(∠MAP+∠AQB)=∠ABC=60°,
∴∠QMC=∠AMP=60°,
故∠QMC的度数不变,度数为60°.
(3)角度不变,120°,理由如下:
当点P、Q在AB、BC的延长线上运动时,
有AP=BQ,∴BP=CQ
∵∠ABC=∠BCA=60°,
∴∠CBP=∠ACQ=120°,
∴
∴∠Q=∠P,
∵∠QCM=∠BCP,
∴∠QMC=∠CBP=120°,
故∠QMC的度数不变,度数为120°.
【点拨】本题考查等边三角形的性质、全等三角形的判定和性质、三角形内角和定理,灵活运用等边三角形的性质证全等是解题的关键.
45.(1);(2),理由详见解析.
【分析】(1)先根据角平分线的定义和平行线的性质证得,再根据AAS证得≌,于是,进一步即得结论;
(2)延长交的延长线于点,如图②,先根据AAS证明≌,可得,再根据角平分线的定义和平行线的性质证得,进而得出结论.
【详解】
解:(1).
理由如下:如图①,∵是的平分线,∴
∵,∴,∴,∴.
∵点是的中点,∴,
又∵,
∴≌(AAS),∴.
∴.
故答案为.
(2).
理由如下:如图②,延长交的延长线于点.
∵,∴,
又∵,,
∴≌(AAS),∴,
∵是的平分线,∴,
∵,∴,∴,
∵,∴.
【点拨】本题考查了全等三角形的判定和性质、平行线的性质、角平分线的定义和等角对等边等知识,添加恰当辅助线构造全等三角形是解本题的关键.
初中数学人教版八年级下册17.1 勾股定理课时作业: 这是一份初中数学人教版八年级下册<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">17.1 勾股定理课时作业</a>,共32页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题 17.14 勾股定理中考真题专练(巩固篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版): 这是一份专题 17.14 勾股定理中考真题专练(巩固篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版),共39页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题23.13 《旋转》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版): 这是一份专题23.13 《旋转》中考真题专练(巩固篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共52页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。