|试卷下载
搜索
    上传资料 赚现金
    2021届江苏省盐城市高三下学期5月第三次模拟考试数学试题
    立即下载
    加入资料篮
    2021届江苏省盐城市高三下学期5月第三次模拟考试数学试题01
    2021届江苏省盐城市高三下学期5月第三次模拟考试数学试题02
    2021届江苏省盐城市高三下学期5月第三次模拟考试数学试题03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021届江苏省盐城市高三下学期5月第三次模拟考试数学试题

    展开
    这是一份2021届江苏省盐城市高三下学期5月第三次模拟考试数学试题,共17页。试卷主要包含了05,72,e2≈7等内容,欢迎下载使用。

    盐城市2021届高三年级第三次模拟考试
    数 学 2021.05
    注意事项:
    1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.
    2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.
    3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.
    一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.设集合A={x|y=},B={y|y=},C={(x,y)|y=},则下列集合不为空集的是
    A.A∩B B.A∩C C.B∩C D.A∩B∩C
    2.若复数z满足|z-i|≤2,则z的最大值为
    A.1 B.2 C.4 D.9
    3.同学们都知道平面内直线方程的一般式为Ax+By+C=0,我们可以这样理解:若直线l过定点P0(x0,y0),向量=(A,B)为直线l的法向量,设直线l上任意一点P(x,y),则×=0,得直线l的方程为,即可转化为直线方程的一般式.类似地,在空间中,若平面α过定点Q0(1,0,-2),向量为平面α的法向量,则平面α的方程为
    A.2x-3y+z+4=0 B.2x+3y-z-4=0
    C.2x-3y+z=0 D.2x+3y-z+4=0
    4.将函数的图象向左平移个单位,得到函数g(x)的图象,若x∈(0,m)时,函数g(x)的图象在f(x)的上方,则实数m的最大值为
    A. B. C. D.
    5.已知数列的通项公式为,则其前n项和为
    A. B. C. D.
    6.韦达是法国杰出的数学家,其贡献之-是发现了多项式方程根与系数的关系,如:设一元三次方程的3个实数根为x1,x2,x3,则,.已知函数,直线l与f(x)的图象相切于点,且交f(x)的图象于另一点,则
    A. B.
    C.2x1+x2+1=0 D.2x1+x2=0
    7.设双曲线C:0)的焦距为2,若以点P(m,n)(m<a)为圆心的圆P过C的右顶点且与C的两条渐近线相切,则OP长的取值范围是
    A.(0,) B.(0,1) C.(,1) D.(,)
    8.已知正数x,y,z满足xlny=yez=zx,则x,y,z的大小关系为
    A.x>y>z B.y>x>z C.x>z>y D.以上均不对
    二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.
    9.已知X ~ N(μ1,σ12),Y ~ N(μ2,σ22),μ1>μ2,σ1>0,σ2>0,则下列结论中一定成立的有
    A.若σ1>σ2,则P(|X-μ1|≤1)<P(|Y-μ2|≤1)
    B.若σ1>σ2,则P(|X-μ1|≤1)>P(|Y-μ2|≤1)
    C.若σ1=σ2,则P(X>μ2)+P(Y>μ1)=1
    D.若σ1=σ2,则P(X>μ2)+P(Y>μ1)<1
    10.设数列{an}的前n项和为,若,则下列说法中正确的有
    A.存在A,B,C使得{an}是等差数列
    B.存在A,B,C使得{an}是等比数列
    C.对任意A,B,C都有{an}一定是等差数列或等比数列
    D.存在A,B,C使得{an}既不是等差数列也不是等比数列
    11.已知矩形ABCD满足AB=1,AD=2,点E为BC的中点,将△ABE沿AE折起,点B折至B′,得到四棱锥B′-AECD,若点P为B′D的中点,则
    A.CP//平面B′AE
    B.存在点B′,使得CP⊥平面AB′D
    C.四棱锥B′-AECD体积的最大值为
    D.存在点B′,使得三棱锥B′-ADE外接球的球心在平面AECD内
    12.将平面向量称为二维向量,由此可推广至n维向量.对于n维向量,其运算与平面向量类似,如数量积=||||cosθ=(θ为向量的夹角),其向量的模||=,则下列说法正确的有
    A.不等式()()≤()2可能成立
    B.不等式()()≥()2一定成立
    C.不等式n<()2可能成立
    D.若,则不等式≥n2一定成立
    三、填空题(本大题共4小题,每小题5分,共20分)
    13.文旅部在2021年围绕“重温红色历史、传承奋斗精神”“走进大国重器、感受中国力量” “体验美丽乡村、助力乡村振兴”三个主题,遴选推出“建党百年红色旅游百条精品线路”.这些精品线路中包含上海—大会址、嘉兴南湖、井冈山、延安、西柏坡等5个传统红色旅游景区,还有港珠澳大桥、北京大兴国际机场、“中国天眼”、“两弹一星”纪念馆、湖南十八洞村、浙江余村、贵州华茂村等7个展现改革开放和新时代发展成就、展示科技强国和脱贫攻坚成果的景区.为安排旅游路线,从上述12个景区中选3个景区,则至少含有1个传统红色旅游景区的选法有 种.
    14.满足等式(1-tanα)(1-tanβ)=2的数组(α,β)有无穷多个,试写出一个这样的数组 .
    15.若向量,满足|-|=,则×的最小值为 .
    16.对于函数x+1,有下列4个论断:
    甲:函数f(x)有两个减区间; 乙:函数f(x)的图象过点(1,-1);
    丙:函数f(x)在x=1处取极大值;丁:函数f(x)单调.
    若其中有且只有两个论断正确,则m的取值为 .


    四、解答题:本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.
    17.(10分)
    在△ABC中,角A,B,C所对的边分别为a,b,c,点D满足3=与
    (1)若b=c,求A的值;
    (2)求B的最大值.









    18.(12分)
    请在①;②;③这3个条件中选择1个条件,补全下面的命题使其成为真命题,并证明这个命题(选择多个条件并分别证明的按前1个评分).
    命题:已知数列满足an+1=an2,若 ,则当n≥2时,an≥2n恒成立.

















    19.(12分)
    如图,在三棱柱中,,且平面ABC⊥平面
    (1)求证:平面ABC⊥平面;
    A1
    (2)设点P为直线BC的中点,求直线与平面所成角的正弦值.
    C1

    B1





    C
    A

    P


    B




    20.(12分)
    如图,在平面直角坐标系中,已知点P是抛物线上的一个点,其横坐标为x0,过点P作抛物线的切线l.
    (1)求直线l的斜率(用x0与p表示);
    (2)若椭圆过点P,l与的另一个交点为A,OP与的另一个交点为B,求证:AB⊥PB.
    y
    x
    y
    o


    P

    A
    B
    O
    x






    21.(12分)
    运用计算机编程,设计一个将输入的正整数k“归零”的程序如下:按下回车键,等可能的将[0,k)中的任意一个整数替换k的值并输出k的值,反复按回车键执行以上操作直到输出k=0后终止操作.
    (1)若输入的初始值k为3,记按回车键的次数为ξ,求ξ的概率分布与数学期望;
    (2)设输入的初始值为k(k∈N*),求运行“归零”程序中输出n(0≤n≤k-1)的概率.












    22.(12分)
    设(n∈N*).
    (1)求证:函数f(x)一定不单调;
    (2)试给出一个正整数a,使得对∀x∈(0,+∞)恒成立.
    (参考数据:e≈2.72,e2≈7.39,e3≈20.10)








    盐城市2021届高三年级第三次模拟考试
    数 学 2021.05
    注意事项:
    1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.
    2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.
    3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.
    一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.设集合A={x|y=},B={y|y=},C={(x,y)|y=},则下列集合不为空集的是
    A.A∩B B.A∩C C.B∩C D.A∩B∩C
    【答案】A
    2.若复数z满足|z-i|≤2,则z的最大值为
    A.1 B.2 C.4 D.9
    【答案】D
    3.同学们都知道平面内直线方程的一般式为Ax+By+C=0,我们可以这样理解:若直线l过定点P0(x0,y0),向量=(A,B)为直线l的法向量,设直线l上任意一点P(x,y),则×=0,得直线l的方程为,即可转化为直线方程的一般式.类似地,在空间中,若平面α过定点Q0(1,0,-2),向量为平面α的法向量,则平面α的方程为
    A.2x-3y+z+4=0 B.2x+3y-z-4=0
    C.2x-3y+z=0 D.2x+3y-z+4=0
    【答案】C
    4.将函数的图象向左平移个单位,得到函数g(x)的图象,若x∈(0,m)时,函数g(x)的图象在f(x)的上方,则实数m的最大值为
    A. B. C. D.
    【答案】C
    5.已知数列的通项公式为,则其前n项和为
    A. B. C. D.
    【答案】A
    6.韦达是法国杰出的数学家,其贡献之-是发现了多项式方程根与系数的关系,如:设一元三次方程的3个实数根为x1,x2,x3,则,.已知函数,直线l与f(x)的图象相切于点,且交f(x)的图象于另一点,则
    A. B.
    C.2x1+x2+1=0 D.2x1+x2=0
    【答案】D
    7.设双曲线C:0)的焦距为2,若以点P(m,n)(m<a)为圆心的圆P过C的右顶点且与C的两条渐近线相切,则OP长的取值范围是
    A.(0,) B.(0,1) C.(,1) D.(,)
    【答案】B
    8.已知正数x,y,z满足xlny=yez=zx,则x,y,z的大小关系为
    A.x>y>z B.y>x>z C.x>z>y D.以上均不对
    【答案】A
    二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.
    9.已知X ~ N(μ1,σ12),Y ~ N(μ2,σ22),μ1>μ2,σ1>0,σ2>0,则下列结论中一定成立的有
    A.若σ1>σ2,则P(|X-μ1|≤1)<P(|Y-μ2|≤1)
    B.若σ1>σ2,则P(|X-μ1|≤1)>P(|Y-μ2|≤1)
    C.若σ1=σ2,则P(X>μ2)+P(Y>μ1)=1
    D.若σ1=σ2,则P(X>μ2)+P(Y>μ1)<1
    【答案】AC
    10.设数列{an}的前n项和为,若,则下列说法中正确的有
    A.存在A,B,C使得{an}是等差数列
    B.存在A,B,C使得{an}是等比数列
    C.对任意A,B,C都有{an}一定是等差数列或等比数列
    D.存在A,B,C使得{an}既不是等差数列也不是等比数列
    【答案】ABD
    11.已知矩形ABCD满足AB=1,AD=2,点E为BC的中点,将△ABE沿AE折起,点B折至B′,得到四棱锥B′-AECD,若点P为B′D的中点,则
    A.CP//平面B′AE
    B.存在点B′,使得CP⊥平面AB′D
    C.四棱锥B′-AECD体积的最大值为
    D.存在点B′,使得三棱锥B′-ADE外接球的球心在平面AECD内
    【答案】ACD
    12.将平面向量称为二维向量,由此可推广至n维向量.对于n维向量,其运算与平面向量类似,如数量积=||||cosθ=(θ为向量的夹角),其向量的模||=,则下列说法正确的有
    A.不等式()()≤()2可能成立
    B.不等式()()≥()2一定成立
    C.不等式n<()2可能成立
    D.若,则不等式≥n2一定成立
    【答案】ABD
    三、填空题:本大题共4小题,每小题5分,共20分.
    13.文旅部在2021年围绕“重温红色历史、传承奋斗精神”“走进大国重器、感受中国力量” “体验美丽乡村、助力乡村振兴”三个主题,遴选推出“建党百年红色旅游百条精品线路”.这些精品线路中包含上海—大会址、嘉兴南湖、井冈山、延安、西柏坡等5个传统红色旅游景区,还有港珠澳大桥、北京大兴国际机场、“中国天眼”、“两弹一星”纪念馆、湖南十八洞村、浙江余村、贵州华茂村等7个展现改革开放和新时代发展成就、展示科技强国和脱贫攻坚成果的景区.为安排旅游路线,从上述12个景区中选3个景区,则至少含有1个传统红色旅游景区的选法有 种.
    【答案】185
    14.满足等式(1-tanα)(1-tanβ)=2的数组(α,β)有无穷多个,试写出一个这样的数组 .
    【答案】(0,);满足α+β=+kπ,k∈Z,且α,β≠+kπ,k∈Z的数组(α,β)均可.
    15.若向量,满足|-|=,则×的最小值为 .
    【答案】-
    16.对于函数x+1,有下列4个论断:
    甲:函数f(x)有两个减区间; 乙:函数f(x)的图象过点(1,-1);
    丙:函数f(x)在x=1处取极大值;丁:函数f(x)单调.
    若其中有且只有两个论断正确,则m的取值为 .
    【答案】2
    四、解答题:本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.
    17.(10分)
    在△ABC中,角A,B,C所对的边分别为a,b,c,点D满足3=与
    (1)若b=c,求A的值;
    (2)求B的最大值.
    【考点】解三角形与平面向量综合应用
    【解析】
    (1)因为×=0,所以(+)×=0,
    即(+)×=0, ……2分
    所以bc×cosA+b2=0,
    因为b=c,所以cosA=-, ……4分
    因为0<A<π,所以A=. ……5分
    (2)因为×=(+)×=bc×cosA+b2=0,
    所以b2+c2-a2+b2=0,即2b2+c2-a2=0, ……6分
    cosB===≥, ……8分
    因为0<B<π,所以B的最大值为. ……10分
    18.(12分)
    请在①;②;③这3个条件中选择1个条件,补全下面的命题使其成为真命题,并证明这个命题(选择多个条件并分别证明的按前1个评分).
    命题:已知数列满足an+1=an2,若 ,则当n≥2时,an≥2n恒成立.
    【考点】数列的通项公式求解与不等式的证明
    【解析】
    选②.
    证明:由an+1=an2,且,所以an>0,
    所以lgan+1=lgan,lgan=lg2,an=, ……5分
    当n≥2时,只需证明≥n,
    令bn=,则bn+1-bn=-=<0, ……10分
    所以bn≤b2=1,所以≥n成立.
    综上所述,当a1=2且n≥2时,an≥2n成立. ……12分
    注:选②为假命题,不得分,选③参照给分.





    19.(12分)
    如图,在三棱柱中,,且平面ABC⊥平面
    (1)求证:平面ABC⊥平面;
    z
    A1
    A1
    (2)设点P为直线BC的中点,求直线与平面所成角的正弦值.
    C1
    C1

    B1
    B1





    C
    C
    A

    y
    A
    P

    P

    E
    B
    B

    x

    第19题图
    【考点】立体几何中证明位置关系、求线面角的正弦值
    【解析】
    (1)证明:因为AC=2BC=2,所以BC=1.
    因为2∠ACB=,所以∠ACB=.
    在△ABC中,=,即=,
    所以sinB=1,即AB⊥BC. ……2分
    又因为平面ABC⊥平面,平面ABC∩平面=BC,ABÌ平面ABC,
    所以AB⊥平面.
    又B1CÌ平面,所以AB⊥B1C,
    在△B1BC中,B1B=2,BC=1,∠CBB1=,
    所以B1C2=B1B2+BC2-2B1B×BC×cos=3,即B1C=,
    所以B1C⊥BC. ……4分
    而AB⊥B1C,ABÌ平面ABC,BCÌ平面ABC,AB∩BC=B,
    所以B1C⊥平面ABC.
    又B1CÌ平面,所以平面ABC⊥平面. ……6分
    (2)在平面ABC中过点C作AC的垂线CE,分别以CE,CA,CB1所在直线为x,y,z轴建立如图所示的空间直角坐标系:
    则B(,,0),A(0,2,0),B1(0,0,),
    所以P(,,0),==(-,,0), ……8分
    所以A1(-,,),所以=(,-,-),
    平面ACB1的一个法向量为=(1,0,0), ……10分
    设直线A1P与平面ACB1所成的角为α,
    则sinα=|cos<,>|===. ……12分
    20.(12分)
    如图,在平面直角坐标系中,已知点P是抛物线上的一个点,其横坐标为x0,过点P作抛物线的切线l.
    (1)求直线l的斜率(用x0与p表示);
    (2)若椭圆过点P,l与的另一个交点为A,OP与的另一个交点为B,求证:AB⊥PB.
    y


    P

    A
    B
    O
    x




    【考点】圆锥曲线中抛物线与椭圆的综合应用:斜率表示、证明垂直问题
    【解析】
    (1)由x2=2py,得y=x2,所以y′=x,
    所以直线l的斜率为x0. ……3分
    (2)设P(x0,y0),则B(-x0,-y0),kPB=,
    由(1)知kPA=x0=, ……5分
    设A(x1,y1),所以+x02=1,+x12=1,
    作差得+(x0+x1)(x0-x1)=0,
    即×=-,所以kPAkAB=-, ……10分
    所以kAB=-,即kAB=-,
    所以kPBkAB=-1,所以AB⊥PB. ……12分
    注:其他解法参照评分.
    21.(12分)
    运用计算机编程,设计一个将输入的正整数k“归零”的程序如下:按下回车键,等可能的将[0,k)中的任意一个整数替换k的值并输出k的值,反复按回车键执行以上操作直到输出k=0后终止操作.
    (1)若输入的初始值k为3,记按回车键的次数为ξ,求ξ的概率分布与数学期望;
    (2)设输入的初始值为k(k∈N*),求运行“归零”程序中输出n(0≤n≤k-1)的概率.
    【考点】随机事件的概率与期望
    【解析】
    (1)P(ξ=3)=×=,P(ξ=2)=×+=,P(ξ=1)=, ……3分
    则ξ的概率分布如下表:
    ξ
    1
    2
    3
    P



    所以E(ξ)=1×+2×+3×=. ……5分
    (2)设运行“归零”程序中输出n(0≤n≤k-1)的概率为Pn,得出Pn=,……7分
    法一:则Pn=Pn+1×+Pn+2×+Pn+3×+…+Pk-1×+,
    故0≤n≤k-2时,Pn+1=Pn+2×+Pn+3×+…+Pk-1×+,
    以上两式作差得,Pn-Pn+1=Pn+1×,则Pn=Pn+1×, ……10分
    则Pn+1=Pn+2×,Pn+2=Pn+3×,…,Pk-2=Pk-1×,
    则PnPn+1Pn+2…Pk-1=Pn+1Pn+2Pn+3…Pk-1××××…×,
    化简得Pn=Pk-1×,而Pk-1=,故Pn=,
    又n=k-1时,Pn=也成立,故Pn=(0≤n≤k-1). ……12分
    法二:同法一得Pn=Pn+1×, ……9分
    则P0=P1×,P1=P2×,P2=P3×,…,Pn-1=Pn×,
    则P0P1P2…Pn-1=P0P1P2…Pn××××…×,
    化简得P0=Pn×(n+1),而P0=1,故Pn=(0≤n≤k-1),
    又n=0时,Pn=也成立,故Pn=(0≤n≤k-1). ……12分
    法三:记Pm(n)表示在出现m的条件下出现n的概率,
    则Pn+1(n)=,Pn+2(n)=Pn+1(n)+=,
    Pn+3(n)=Pn+2(n)+Pn+1(n)+=, ……9分
    依此类推,Pk(n)=Pk-1(n)+Pk-2(n)+…+Pn+1(n)+,
    所以Pk(n)=(×(k-n-1)+1)=. ……12分
    法四:记Pk(n)表示在出现k的条件下出现n的概率,
    则Pk(n)=Pk-1(n)+Pk-2(n)+…+Pn+1(n)+,
    则kPk(n)=Pk-1(n)+Pk-2(n)+…+Pn+1(n)+1,①
    则(k-1)Pk-1(n)=Pk-2(n)+…+Pn+1(n)+1,②
    ①-得kPk(n)-(k-1)Pk-1(n)=Pk-1(n), ……9分
    则Pk(n)=Pk-1(n)(k≥n+2),
    则Pk(n)=Pn+1(n)=. ……12分

    22.(12分)
    设(n∈N*).
    (1)求证:函数f(x)一定不单调;
    (2)试给出一个正整数a,使得对∀x∈(0,+∞)恒成立.
    (参考数据:e≈2.72,e2≈7.39,e3≈20.10)
    【考点】函数与导数:函数单调性应用;恒成立问题
    【解析】
    (1)由得f′(x)==,
    因n∈N*,由f′(x)=0,得x=, ……1分
    当x>时,f′(x)<0;当时0<x<,f′(x)>0;
    故函数f(x)在(0,)上单调递增,在(,+¥)上单调递减,
    所以函数f(x)不单调. ……3分
    (2)当a=1时,可证明ex>x2lnx+sinx对"x∈(0,+∞)恒成立,
    当x∈(0,1)时,x2lnx≤0,sinx≤1,ex>1,不等式成立; ……4分
    当x∈(1,e)时,x2lnx+sinx<x2+1,令g(x)=,
    所以g′(x)=≤0,则函数g(x)单调递减,所以g(x)≤g(1)=<1,
    所以ex>x2+1,原不等式成立; ……7分
    当x∈(e,+¥)时,因x2lnx+sinx≤x2lnx+1,故只需证ex>x2lnx+1,
    即证>+,只需证>+,
    在(1)中令n=1,可得f(x)≤f(e)=,故+≤+,
    令h(x)=,所以h′(x)==0,解得x=3,
    当x∈(e,3)时,h′(x)<0;当x∈(3,+¥)时,h′(x)>0,
    所以h(x)≥h(3)=>,而+≤+<,
    所以原不等式也成立.
    综上所述,当a=1时,ex>x2lnx+sinx对"x∈(0,+∞)恒成立. ……12分
    注:当a=2或a=3时结论也成立,请参照评分;当a≥4时结论不成立.






    相关试卷

    2023届江苏省盐城市高三下学期第三次模拟考试数学试题含答案: 这是一份2023届江苏省盐城市高三下学期第三次模拟考试数学试题含答案,共17页。试卷主要包含了已知,,虚数是方程的根,则,定义曲线为双曲线的“伴随曲线”等内容,欢迎下载使用。

    2023届江苏省盐城市高三下学期第三次模拟考试数学试题PDF版含答案: 这是一份2023届江苏省盐城市高三下学期第三次模拟考试数学试题PDF版含答案,共14页。

    2022届江苏省盐城市高三第三次模拟考试数学试题: 这是一份2022届江苏省盐城市高三第三次模拟考试数学试题,文件包含2022届江苏省盐城市高三第三次模拟测试数学答案pdf、2022届江苏省盐城市高三第三次模拟测试数学试卷docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map