数学必修24.3 空间直角坐标系练习
展开空间直角坐标系的建立 练习
考纲要求:①了解空间直角坐标系,会用空间直角坐标系表示点的位置.
②会推导空间两点间的距离公式.
重难点:了解空间直角坐标系,会用空间直角坐标系刻画点的位置;会推导空间两点间的距离公式.
经典例题:在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问
(1)在y轴上是否存在点M,满足?
(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.
当堂练习:
1.在空间直角坐标系中, 点P(1,2,3)关于x轴对称的点的坐标为( )
A.(-1,2,3) B.(1,-2,-3) C.(-1, -2, 3) D.(-1 ,2, -3)
2.在空间直角坐标系中, 点P(3,4,5)关于yOz平面对称的点的坐标为( )
A.(-3,4,5) B.(-3,- 4,5) C.(3,-4,-5) D.(-3,4,-5)
3.在空间直角坐标系中, 点A(1, 0, 1)与点B(2, 1, -1)之间的距离为( )
A. B.6 C. D.2
4.点P( 1,0, -2)关于原点的对称点P/的坐标为( )
A.(-1, 0, 2) B.(-1,0, 2) C.(1 , 0 ,2) D.(-2,0,1)
5.点P( 1, 4, -3)与点Q(3 , -2 , 5)的中点坐标是( )
A.( 4, 2, 2) B.(2, -1, 2) C.(2, 1 , 1) D. 4, -1, 2)
6.若向量在y轴上的坐标为0, 其他坐标不为0, 那么与向量平行的坐标平面是( )
A. xOy平面 B. xOz平面 C.yOz平面 D.以上都有可能
7.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是( )
A.关于x轴对称 B.关于xOy平面对称 C.关于坐标原点对称 D.以上都不对
8.已知点A的坐标是(1-t , 1-t , t), 点B的坐标是(2 , t, t), 则A与B两点间距离的最小值为( )
A. B. C. D.
9.点B是点A(1,2,3)在坐标平面内的射影,则OB等于( )
A. B. C. D.
10.已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则点D的坐标为 ( )
A.(,4,-1) B.(2,3,1) C.(-3,1,5) D.(5,13,-3)
11.点到坐标平面的距离是( )
A. B. C. D.
12.已知点,, 三点共线,那么的值分别是( )
A.,4 B.1,8 C.,-4 D.-1,-8
13.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( )
A. B. C. D.
14.在空间直角坐标系中, 点P的坐标为(1, ),过点P作yOz平面的垂线PQ, 则垂足Q的坐标是________________.
15.已知A(x, 5-x, 2x-1)、B(1,x+2,2-x),当|AB|取最小值时x的值为_______________.
16.已知空间三点的坐标为A(1,5,-2)、B(2,4,1)、C(p,3,q+2),若A、B、C三点共线,则p =_________,q=__________.
17.已知点A(-2, 3, 4), 在y轴上求一点B , 使|AB|=7 , 则点B的坐标为________________.
18.求下列两点间的距离:
(1) A(1 , 1 , 0) , B(1 , 1 , 1);
(2) C(-3 ,1 , 5) , D(0 , -2 , 3).
19.已知A(1 , -2 , 11) , B(4 , 2 , 3) ,C(6 , -1 , 4) , 求证: ABC是直角三角形.
20.求到下列两定点的距离相等的点的坐标满足的条件:
(1) A(1 , 0 ,1) , B(3 , -2 , 1) ;
(2) A(-3 , 2 , 2) , B(1 , 0 , -2).
21.在四棱锥P-ABCD中,底面ABCD为正方形,且边长为2a,棱PD⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G,H,写出点E,F,G,H的坐标.
答案部分:
经典例题:
解:(1)假设在在y轴上存在点M,满足.
因M在y轴上,可设M(0,y,0),由,可得
,
显然,此式对任意恒成立.这就是说y轴上所有点都满足关系.
(2)假设在y轴上存在点M,使△MAB为等边三角形.
由(1)可知,y轴上任一点都有,所以只要就可以使得△MAB是等边三角形. 因为
于是,解得
故y轴上存在点M使△MAB等边,M坐标为(0,,0),或(0,,0).
当堂练习:
1.B; 2.A; 3.A; 4.B; 5.C; 6.B; 7.B; 8.C; 9.B; 10.D; 11.C; 12.C; 13.A; 14. (0, ); 15. ; 16. 3 , 2; 17. (0, ;
18. 解: (1)|AB|= (2)|CD|==
19. 证明:
为直角三角形.
20. 解: (1)设满足条件的点的坐标为(x ,y , z) , 则,
化简得4x-4y-3=0即为所求.
(2)设满足条件的点的坐标为(x ,y , z) , 则,
化简得2x-y-2z+3=0即为所求.
21. 解: 由图形知,DA⊥DC,DC⊥DP,DP⊥DA,故以D为原点,建立如图空间坐标系D-xyz.
因为E,F,G,H分别为侧棱中点,由立体几何知识可知,平面EFGH与底面ABCD平行,
从而这4个点的竖坐标都为P的竖坐标的一半,也就是b,
由H为DP中点,得H(0,0,b)
E在底面面上的投影为AD中点,所以E的横坐标和纵坐标分别为a和0,所以E(a,0,b),
同理G(0,a,b);
F在坐标平面xOz和yOz上的投影分别为点E和G,故F与E横坐标相同都是a,
与G的纵坐标也同为a,又F竖坐标为b,故F(a,a,b).
高中数学第四章 圆与方程4.3 空间直角坐标系随堂练习题: 这是一份高中数学第四章 圆与方程4.3 空间直角坐标系随堂练习题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学必修2第四章 圆与方程4.3 空间直角坐标系同步训练题: 这是一份数学必修2第四章 圆与方程4.3 空间直角坐标系同步训练题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版新课标A必修24.3 空间直角坐标系课后作业题: 这是一份人教版新课标A必修24.3 空间直角坐标系课后作业题,共7页。