搜索
    上传资料 赚现金
    英语朗读宝

    高二新课程数学第三章《复数》知识点、考点、典型(新人教A版)选修2-2

    高二新课程数学第三章《复数》知识点、考点、典型(新人教A版)选修2-2第1页
    高二新课程数学第三章《复数》知识点、考点、典型(新人教A版)选修2-2第2页
    高二新课程数学第三章《复数》知识点、考点、典型(新人教A版)选修2-2第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高二新课程数学第三章《复数》知识点、考点、典型(新人教A版)选修2-2

    展开

    高中数学  选修2-3知识点第一章                计数原理知识点:1分类加法计数原理做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有MN种不同的方法,那么完成这件事情共有M1+M2+……+MN种不同的方法。 2分步乘法计数原理做一件事,完成它需要分成N个步骤,做第一 步有m1种不同的方法,做第二步有M2不同的方法,……,做第N步有MN不同的方法.那么完成这件事共有 N=M1M2...MN 种不同的方法3排列n个不同的元素中任取m(mn)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列4排列数n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列. n个不同元素中取出m个元素的一个排列数,用符号表示 5公式:         6、组合n个不同的元素中任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。7、公式:                  8二项式定理:9二项式通项公式考点:1、排列组合的运用       2、二项式定理的应用★★1.我省高中学校自实施素质教育以来,学生社团得到迅猛发展。某校高一新生中的五名同   学打算参加春晖文学社舞者轮滑俱乐部篮球之家围棋苑四个社团。若   每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同   学甲不参加围棋苑,则不同的参加方法的种数为       A72 B108 C180 D216           ★★2.在的展开式中,x的幂的指数是整数的项共有       A3 B4 C5 D6    ★★3.现有12件商品摆放在货架上,摆成上层4件下层8件,现要从下层8件中取2件调整到上层,若其他商品的相对顺序不变,则不同调整方法的种数是      A420          B560           C840           D20160      ★★4.把编号为1,2,3,4的四封电子邮件分别发送到编号为1,2,3,4的四个网址,则至多有一封邮件的编号与网址的编号相同的概率为             ★★5的展开式中的系数为        A-56 B56 C-336 D336第二章 随机变量及其分布知识点:1、随机变量如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X、Y等或希腊字母 ξη等表示。2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.3离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,..... ,xi ,......,xn X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质 pi0, i =12  ; p1 + p2 ++pn= 15、二项分布:如果随机变量X的分布列为:  其中0<p<1q=1-p,则称离散型随机变量X服从参数p的二点分布 6超几何分布:一般地, 设总数为N件的两类物品,其中一类有M件,从所有物品中任取n(nN),n件中所含这类物品件数X是一个离散型随机变量,则它取值为k时的概率为其中,7条件概率:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率.记作P(B|A),读作A发生的条件下B的概率8公式     9相互独立事件:事件A(B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。 10n次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布 设在n次独立重复试验中某个事件A发生的次数,A发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p,事件A不发生的概率为q=1-p,那么在n次独立重复试验中 (其中 k=0,1, ……,nq=1-p 于是可得随机变量ξ的概率分布如下:这样的随机变量ξ服从二项分布,记作ξB(np) ,其中np为参数12数学期望:一般地,若离散型随机变量ξ的概率分布为则称 Eξx1p1x2p2xnpnξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。13两点分布数学期望E(X)=np14超几何分布数学期望EX=.15方差:D(ξ)=(x1-Eξ)2·P1+x2-Eξ)2·P2 +......+xn-Eξ)2·Pn 叫随机变量ξ的均方差,简称方差。16、集中分布的期望与方差一览 期望方差两点分布Eξ=pDξ=pq,q=1-p超几何分布DX=np1-p*  N-n/N-1(不要求)二项分布ξ ~ B(n,p)Eξ=np  Dξ=qEξ=npq,q=1-p 几何分布,p(ξ=k)=g(k,p)17.正态分布若概率密度曲线就是或近似地是函数   的图像,其中解析式中的实数是参数,分别表示总体的平均数与标准差.则其分布叫正态分布f( x )的图象称为正态曲线    18.基本性质:曲线在x轴的上方,与x轴不相交.曲线关于直线x=对称,且在x=时位于最高点.当时,曲线上升;当时,曲线下降.并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.  一定时,曲线的形状由确定.越大,曲线越矮胖,表示总体的分布越分散;越小,曲线越瘦高,表示总体的分布越集中.σ相同时,正态分布曲线的位置由期望值μ来决定.正态曲线下的总面积等于1.19.  3原则:从上表看到,正态总体在   以外取值的概率 只有4.6%,以外取值的概率只有0.3%  由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.考点:1、概率的求解      2、期望的求解      3、正态分布概念★★★1.(本小题满分12分)某项考试按科目、科目依次进行,只有当科目成绩合格时,才可以继续参加科目 的考试。每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书,现在某同学将要参加这项考试,已知他每次考科目成绩合格的概率均为,每次考科目成绩合格的概率均为。假设他在这项考试中不放弃所有的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为   (1)的分布列和均值; (2)求该同学在这项考试中获得合格证书的概率。★★★2(本小题满分12分)    济南市有大明湖、趵突泉、千佛山、园博园4个旅游景点,一位客人浏览这四个景点的概率分别是0.3,0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。   (1)求=0对应的事件的概率;   (2)求的分布列及数学期望。★★★3. 袋子中装有8个黑球,2个红球,这些球只有颜色上的区别。1)随机从中取出2个球,表示其中红球的个数,求的分布列及均值。2)现在规定一种有奖摸球游戏如下:每次取球一个,取后不放回,取到黑球有奖,第一个奖100元,第二个奖200元,,第个奖元,取到红球则要罚去前期所有奖金并结束取球,按照这种规则,取球多少次比较适宜?说明理由。第三章 统计案例知识点:1独立性检验假设有两个分类变量XY,它们的值域分另为{x1, x2}{y1, y2},其样本频数列联表为:     y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d 若要推断的论述为H1“XY有关系,可以利用独立性检验来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠程度。具体的做法是,由表中的数据算出随机变量K^2的值(即K的平方)   K2 = n (ad - bc) 2 / [(a+b)(c+d)(a+c)(b+d)]其中n=a+b+c+d为样本容量K2的值越大,说明“XY有关系成立的可能性越大。  K23.841时,XY无关; K2>3.841时,XY95%可能性有关;K2>6.635XY99%可能性有关2回归分析  回归直线方程   其中,      考点:    

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map