专题05 14.2乘法公式 - 期末复习专题训练 2021-2022学年人教版数学八年级上册
展开专题05 : 2021年人教新版八年级(上册)14.2乘法公式 - 期末复习专题训练
一、选择题(共10小题)
1.下列各式中,不能用平方差公式计算的是( )
A.(x﹣y)(﹣x+y) B.(﹣x+y)(﹣x﹣y)
C.(﹣x﹣y)(x﹣y) D.(x+y)(﹣x+y)
2.将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为( )
A.(a﹣b)2=a2﹣2ab+b2 B.(a+b)2=a2+2ab+b2
C.(a+b)(a﹣b)=a2﹣b2 D.a(a﹣b)=a2﹣ab
3.已知x2﹣8x+a可以写成一个完全平方式,则a可为( )
A.4 B.8 C.16 D.﹣16
4.计算(﹣a﹣b)2等于( )
A.a2+b2 B.a2﹣b2 C.a2+2ab+b2 D.a2﹣2ab+b2
5.下列多项式相乘,不能用平方差公式计算的是( )
A.(2x﹣3y)(3y﹣2x) B.(﹣2x+3y)(﹣2x﹣3y)
C.(x﹣2y)(2y+x) D.(x+3y)(x﹣3y)
6.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是( )
A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2
C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab
7.如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个长方形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为( )
A.(a﹣b)2=a2﹣2ab+b2 B.(a+b)2=a2+2ab+b2
C.a2﹣b2=(a+b)(a﹣b) D.a2+ab=a(a+b)
8.若x2+2(m﹣3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则nm的值为( )
A.﹣4 B.16 C.4或16 D.﹣4或﹣16
9.已知a+b=﹣5,ab=﹣4,则a2﹣ab+b2=( )
A.29 B.37 C.21 D.33
10.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片4张,边长为b的正方形卡片1张,长,宽分别为a,b的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )
A.2a+b B.4a+b C.a+2b D.a+3b
二、填空题(共5小题)
11.已知a﹣b=2,那么a2﹣b2﹣4b的值为 .
12.若a+b=5,a﹣b=3,则a2﹣b2= .
13.若x2+2(m﹣3)x+16是完全平方式,则m的值等于 .
14.如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是 .
15.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的边长之和为 .
三、解答题(共5小题)
16.(x+2)2﹣(x+1)(x﹣1)
17.乘法公式的探究及应用.
(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式);
(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 .(写成多项式乘法的形式)
(3)比较左、右两图的阴影部分面积,可以得到乘法公式 .(用式子表达)
(4)运用你所得到的公式,计算下列各题:
①10.3×9.7
②(2m+n﹣p)(2m﹣n+p)
18.计算:(x﹣y)2﹣(x+y)(x﹣y)
19.计算:(x+1)(x﹣1)﹣(x+2)2.
20.在学习“乘法公式”时,育红中学七(1)班数学兴趣小组在活动课上进行了这样的操作:作两条互相垂直的线段AB和CD.把大正方形分成四部分(如图所示).
观察发现
(1)请用两种不同的方法表示图形的面积,得到一个等量关系: .
类比操作
(2)请你作一个图形验证:(x+y)(2x+y)=2x2+3xy+y2.
延伸运用
(3)若AB+CD=14,图中阴影部分的面积和为13,求xy的值.
专题05 : 2021年人教新版八年级(上册)14.2乘法公式 - 期末复习专题训练
参考答案与试题解析
一、选择题(共10小题)
1.下列各式中,不能用平方差公式计算的是( )
A.(x﹣y)(﹣x+y) B.(﹣x+y)(﹣x﹣y)
C.(﹣x﹣y)(x﹣y) D.(x+y)(﹣x+y)
【解答】解:A、(x﹣y)(﹣x+y)=﹣(x﹣y)(x﹣y),含y的项符号相同,含x的项符号相同,不能用平方差公式计算,故本选项正确;
B、含x的项符号相同,含y的项符号相反,能用平方差公式计算,故本选项错误;
C、含y的项符号相同,含x的项符号相反,能用平方差公式计算,故本选项错误;
D、含y的项符号相同,含x的项符号相反,能用平方差公式计算.故本选项错误;
故选:A.
2.将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为( )
A.(a﹣b)2=a2﹣2ab+b2 B.(a+b)2=a2+2ab+b2
C.(a+b)(a﹣b)=a2﹣b2 D.a(a﹣b)=a2﹣ab
【解答】解:图甲面积=(a﹣b)(a+b),
图乙面积=a(a﹣b+b)﹣b×b=a2﹣b2,
∵两图形的面积相等,
∴关于a、b的恒等式为:(a+b)(a﹣b)=a2﹣b2.
故选:C.
3.已知x2﹣8x+a可以写成一个完全平方式,则a可为( )
A.4 B.8 C.16 D.﹣16
【解答】解:∵x2﹣8x+a可以写成一个完全平方式,
∴则a可为:16.
故选:C.
4.计算(﹣a﹣b)2等于( )
A.a2+b2 B.a2﹣b2 C.a2+2ab+b2 D.a2﹣2ab+b2
【解答】解:(﹣a﹣b)2=a2+2ab+b2.
故选:C.
5.下列多项式相乘,不能用平方差公式计算的是( )
A.(2x﹣3y)(3y﹣2x) B.(﹣2x+3y)(﹣2x﹣3y)
C.(x﹣2y)(2y+x) D.(x+3y)(x﹣3y)
【解答】解:(2x﹣3y)(3y﹣2x)不能利用平方差公式计算,
故选:A.
6.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是( )
A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2
C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab
【解答】解:左上角正方形的面积=(a﹣b)2,
还可以表示为a2﹣2ab+b2,
∴(a﹣b)2=a2﹣2ab+b2.
故选:B.
7.如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个长方形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为( )
A.(a﹣b)2=a2﹣2ab+b2 B.(a+b)2=a2+2ab+b2
C.a2﹣b2=(a+b)(a﹣b) D.a2+ab=a(a+b)
【解答】解:第一个图形的阴影部分的面积=a2﹣b2;
第二个图形是长方形,则面积=(a+b)(a﹣b).
则a2﹣b2=(a+b)(a﹣b).
故选:C.
8.若x2+2(m﹣3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则nm的值为( )
A.﹣4 B.16 C.4或16 D.﹣4或﹣16
【解答】解:∵x2+2(m﹣3)x+1是完全平方式,(x+n)(x+2)=x2+(n+2)x+2n不含x的一次项,
∴m﹣3=±1,n+2=0,
解得:m=4,n=﹣2,此时原式=16;
m=2,n=﹣2,此时原式=4,
则原式=4或16,
故选:C.
9.已知a+b=﹣5,ab=﹣4,则a2﹣ab+b2=( )
A.29 B.37 C.21 D.33
【解答】解:把a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,
将ab=﹣4代入得:a2+b2=33,
则a2﹣ab+b2=33﹣(﹣4)=37.
故选:B.
10.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片4张,边长为b的正方形卡片1张,长,宽分别为a,b的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )
A.2a+b B.4a+b C.a+2b D.a+3b
【解答】解:由题可知,9张卡片总面积为4a2+4ab+b2,
∵4a2+4ab+b2=(2a+b)2,
∴大正方形边长为2a+b.
故选:A.
二、填空题(共5小题)
11.已知a﹣b=2,那么a2﹣b2﹣4b的值为 4 .
【解答】解:∵a﹣b=2,
∴a=2+b,
∴那么a2﹣b2﹣4b的
=(2+b)2﹣b2﹣4b
=4+4b+b2﹣b2﹣4b
=4,
故答案为:4.
12.若a+b=5,a﹣b=3,则a2﹣b2= 15 .
【解答】解:∵a+b=5,a﹣b=3,
∴a2﹣b2
=(a+b)(a﹣b)
=5×3
=15,
故答案为:15.
13.若x2+2(m﹣3)x+16是完全平方式,则m的值等于 7或﹣1 .
【解答】解:∵x2+2(m﹣3)x+16是完全平方式,
∴2(m﹣3)x=±2•x•4,
解得:m=7或﹣1,
故答案为:7或﹣1.
14.如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是 a2﹣b2=(a+b)(a﹣b) .
【解答】解:左边图形中,阴影部分的面积=a2﹣b2,
右边图形中,阴影部分的面积=(a+b)(a﹣b),
∵两个图形中的阴影部分的面积相等,
∴a2﹣b2=(a+b)(a﹣b).
故答案为:a2﹣b2=(a+b)(a﹣b).
15.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的边长之和为 5 .
【解答】解:设正方形A,B的边长分别为a,b.
由题意
由②得到ab=6,
∴(a+b)2=(a﹣b)2+4ab=1+24=25,
∵a+b>0,
∴a+b=5,
故答案为5.
三、解答题(共5小题)
16.(x+2)2﹣(x+1)(x﹣1)
【解答】解:(x+2)2﹣(x+1)(x﹣1)
=x2+4x+4﹣x2+1
=4x+5.
故答案为:4x+5.
17.乘法公式的探究及应用.
(1)如左图,可以求出阴影部分的面积是 a2﹣b2 (写成两数平方差的形式);
(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 a﹣b ,长是 a+b ,面积是 (a+b)(a﹣b) .(写成多项式乘法的形式)
(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (a+b)(a﹣b)=a2﹣b2 .(用式子表达)
(4)运用你所得到的公式,计算下列各题:
①10.3×9.7
②(2m+n﹣p)(2m﹣n+p)
【解答】解:(1)利用大正方形面积减去小正方形面积即可求出:a2﹣b2;
(2)它的宽是 a﹣b,长是 a+b,面积是(a+b)(a﹣b);
(3)根据题意得出:(a+b)(a﹣b)=a2﹣b2;
(4)①10.3×9.7
=(10+0.3)(10﹣0.3)
=100﹣0.09
=99.91;
②(2m+n﹣p)(2m﹣n+p)
=[2m+(n﹣p)][2m﹣(n﹣p)]
=4m2﹣(n﹣p)2
=4m2﹣n2﹣p2+2np.
18.计算:(x﹣y)2﹣(x+y)(x﹣y)
【解答】解:原式=(x2﹣2xy+y2)﹣(x2﹣y2),
=x2﹣2xy+y2﹣x2+y2,
=﹣2xy+2y2.
19.计算:(x+1)(x﹣1)﹣(x+2)2.
【解答】解:(x+1)(x﹣1)﹣(x+2)2
=x2﹣1﹣x2﹣4x﹣4
=﹣4x﹣5.
20.在学习“乘法公式”时,育红中学七(1)班数学兴趣小组在活动课上进行了这样的操作:作两条互相垂直的线段AB和CD.把大正方形分成四部分(如图所示).
观察发现
(1)请用两种不同的方法表示图形的面积,得到一个等量关系: (x+y)2=x2+2xy+y2 .
类比操作
(2)请你作一个图形验证:(x+y)(2x+y)=2x2+3xy+y2.
延伸运用
(3)若AB+CD=14,图中阴影部分的面积和为13,求xy的值.
【解答】解:(1)由图知,大正方形的边长为x+y,则大正方形的面积为(x+y)2,
∵大正方形的面积为各部分面积和:x2+2xy+y2,
∴(x+y)2=x2+2xy+y2,
故答案为(x+y)2=x2+2xy+y2;
(2)如图所示,
(3)∵AB+CD=14,
∴x+y=7,
∵阴影部分的面积和为13,
∴x2+y2=13,
∵(x+y)2=x2+2xy+y2,
∴72=13+2xy,
∴xy=18.
14.2乘法公式+期末复习解答题专题提升训练+2023-2024学年人教版八年级数学上册++: 这是一份14.2乘法公式+期末复习解答题专题提升训练+2023-2024学年人教版八年级数学上册++,共15页。试卷主要包含了计算,运用完全平方公式计算,用简便方法计算,先化简,再求值,已知下列等式等内容,欢迎下载使用。
【同步讲义】人教版数学八年级上册:专题14.2 乘法公式 讲义: 这是一份【同步讲义】人教版数学八年级上册:专题14.2 乘法公式 讲义,文件包含同步讲义人教版数学八年级上册专题142乘法公式学生版docx、同步讲义人教版数学八年级上册专题142乘法公式教师版docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。
专题06 14.2乘法公式 - 期末复习专题训练 2021-2022学年人教版数学八年级上册: 这是一份专题06 14.2乘法公式 - 期末复习专题训练 2021-2022学年人教版数学八年级上册,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。