|教案下载
搜索
    上传资料 赚现金
    新课标高中数学数学人教A版优秀教案必修4:8.示范教案(2.4.2 平面向量数量积的坐标表示、模、夹角)课件PPT
    立即下载
    加入资料篮
    新课标高中数学数学人教A版优秀教案必修4:8.示范教案(2.4.2  平面向量数量积的坐标表示、模、夹角)课件PPT01
    新课标高中数学数学人教A版优秀教案必修4:8.示范教案(2.4.2  平面向量数量积的坐标表示、模、夹角)课件PPT02
    新课标高中数学数学人教A版优秀教案必修4:8.示范教案(2.4.2  平面向量数量积的坐标表示、模、夹角)课件PPT03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中人教版新课标A2.4 平面向量的数量积教案

    展开
    这是一份高中人教版新课标A2.4 平面向量的数量积教案,共6页。

    2.4.2  平面向量数量积的坐标表示、模、夹角

    整体设计

    教学分析

        平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.

        前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.

        教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.

    三维目标

    1.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法.

    2.掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.

    3.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力,培养学生的创新能力,提高学生的数学素质.

    重点难点

    教学重点:平面向量数量积的坐标表示.

    教学难点:向量数量积的坐标表示的应用.

    课时安排

    1课时

    教学过程

    导入新课

        思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.

        思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.

    推进新课

    新知探究

    提出问题

    平面向量的数量积能否用坐标表示?

    已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用ab的坐标表示a·b?

    怎样用向量的坐标表示两个平面向量垂直的条件?

    你能否根据所学知识推导出向量的长度、距离和夹角公式?

        活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:

    a=x1+y1j,b=x2+y2j,

    a·b=(x1+y1j)·(x2+y2j)

    =x1x22+x1y2·j+x2y1·j+y1y2j2.

    ·=1,j·j=1,·j=j·=0,

    a·b=x1x2+y1y2.

    教师给出结论性的总结,由此可归纳如下:

    平面向量数量积的坐标表示

    两个向量的数量积等于它们对应坐标的乘积的和,

    a=(x1,y1),b=(x2,y2),

    a·b=x1x2+y1y2.

    向量模的坐标表示

    a=(x,y),|a|2=x2+y2,|a|=.

    如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1)(x2,y2),那么

    a=(x2-x1,y2-y1),|a|=

    两向量垂直的坐标表示

    a=(x1,y1),b=(x2,y2),

    abx1x2+y1y2=0.

    两向量夹角的坐标表示

    ab都是非零向量,a=(x1,y1),b=(x2,y2),θab的夹角,根据向量数量积的定义及坐标表示,可得

    cosθ=

    讨论结果:.

    应用示例

    1 已知A(1,2),B(2,3),C(-2,5),试判断△ABC的形状,并给出证明.

        活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.

    :在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△ABC是直角三角形.下面给出证明.

    =(2-1,3-2)=(1,1),

    =(-2-1,5-2)=(-3,3),

    ·=1×(-3)+1×3=0.

    .

    ∴△ABC是直角三角形.

        点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你的结论给出充分的证明.

    变式训练

      △ABC,=(2,3),=(1,k),△ABC的一个内角为直角,k的值.

    :由于题设中未指明哪一个角为直角,故需分别讨论.

    ∠A=90°,,所以·=0.

    于是2×1+3k=0.k=.

    同理可求,∠B=90°,k的值为;

    ∠C=90°,k的值为.

    故所求k的值为.

    2 (1)已知三点A(2,-2),B(5,1),C(1,4),∠BAC的余弦值;

    (2)a=(3,0),b=(-5,5),ab的夹角.

        活动:教师让学生利用向量的坐标运算求出两向量a=(x1,y1)b=(x2,y2)的数量积a·b=x1x2+y1y2和模|a|=,|b|=的积,其比值就是这两个向量夹角的余弦值,cosθ=.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.

    :(1)=(5,1)-(2,-2)=(3,3), =(1,4)-(2,-2)=(-1,6),

    ·=3×(-1)+3×6=15.

    ∵||==3,||==,

    ∴cos∠BAC=

    (2)a·b=3×(-5)+0×5=-15,|a|=3,|b|=52.

    ab的夹角为θ,

    cosθ=∵0≤θ≤π,∴θ=.

        点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与求解主要是对基础知识的巩固与提高.

    变式训练

        a=(5,-7),b=(-6,-4),a·bab间的夹角θ.(精确到1°)

    :a·b=5×(-6)+(-7)×(-4)=-30+28=-2.

    |a|=,|b|=

    由计算器得cosθ=≈-0.03.

    利用计算器中得θ≈92°.

    3 已知|a|=3,b=(2,3),试分别解答下面两个问题:

    (1)ab,a;

    (2)ab,a.

        活动:对平面中的两向量a=(x1,y1)b=(x2,y2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x1x2+y1y2=0与向量共线的坐标表示x1y2-x2y1=0很容易混淆,

    应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a·b=0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的同式变形训练.

    :(1)a=(x,y),|a|=3ab,

    解得

    a=a=

    (2)a=(x,y),|a|=3ab,

    解得

    a=a=.

        点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断垂直或者共线,也能熟练地进行公式的逆用,利用已知关系来求向量的坐标.

    变式训练

      求证:一次函数y=2x-3的图象(直线l1)与一次函数y=x的图象(直线l2)互相垂直.

    :l1:y=2x-3,x=1y=-1;x=2y=1,即在l1上取两点A(1,-1),B(2,1).

    同理,在直线l2上取两点C(-2,1),D(-4,2),于是:

    =(2,1)-(1,-1)=(2-1,1+1)=(1,2),

    =(-4,2)-(-2,1)=(-4+2,2-1)=(-2,1).

    由向量的数量积的坐标表示,可得·=1×(-2)+1×2=0,

    ,l1⊥l2.

    知能训练

    课本本节练习.

    解答:

    1.|a|=5,|b|=,a·b=-7.

    2.a·b=8,(a+b)·(a-b)=-7,a·(a+b)=0,(a+b)2=49.

    3.a·b=1,|a|=,|b|=,θ≈88°.

    课堂小结

    1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.

    2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.

    作业

    课本习题2.4  A8910.

    设计感想

        由于本节课是对平面向量的进一步探究与应用,是对平面向量几何意义的综合研究提高,因此教案设计流程是探究、发现、应用、提高,这符合新课程理念,符合新课标要求.我们知道平面向量的数量积是本章最重要的内容,也是高考中的重点,既有选择题、填空题,也有解答题(大多同立体几何、解析几何综合考查),故学习时要熟练掌握基本概念和性质及其综合运用.而且数量积的坐标表示又是向量运算的一个重要内容,用坐标表示直角坐标平面内点的位置,是解析几何的一个基本特征,从而以坐标为桥梁可以建立向量与解析几何的内在联系.以三角函数表示点的坐标,又可以沟通向量与三角函数的相互关系,由此就产生出一类向量与解析几何及三角函数交汇的综合性问题.

        平面向量数量积的坐标表示使得向量数量积的应用更为方便,也拓宽了向量应用的途径.通过学习本节的内容,要更加加深对向量数量积概念的理解,同时善于运用坐标形式运算解决数量问题,尤其是有关向量的夹角、长度、垂直等,往往可以使问题简单化.灵活使用坐标形式,综合处理向量的线性运算、数量积、平行等,综合地解决向量综合题,体现数形结合的思想.在本节的学习中可以通过对实际问题的抽象来培养学生分析问题、解决问题和应用知识解决问题的意识与能力.

     

    相关教案

    高中数学人教版新课标A必修42.2 平面向量的线性运算教案及反思: 这是一份高中数学人教版新课标A必修42.2 平面向量的线性运算教案及反思

    人教版新课标A必修42.4 平面向量的数量积教案设计: 这是一份人教版新课标A必修42.4 平面向量的数量积教案设计

    高中数学人教版新课标A必修4第二章 平面向量2.4 平面向量的数量积教学设计: 这是一份高中数学人教版新课标A必修4第二章 平面向量2.4 平面向量的数量积教学设计

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map