终身会员
搜索
    上传资料 赚现金
    精品解析:2020年山东省菏泽市东明县中考数学一模试题(解析版+原卷版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      精品解析:2020年山东省菏泽市东明县中考数学一模试题(原卷版).doc
    • 练习
      精品解析:2020年山东省菏泽市东明县中考数学一模试题(解析版).doc
    精品解析:2020年山东省菏泽市东明县中考数学一模试题(解析版+原卷版)01
    精品解析:2020年山东省菏泽市东明县中考数学一模试题(解析版+原卷版)02
    精品解析:2020年山东省菏泽市东明县中考数学一模试题(解析版+原卷版)01
    精品解析:2020年山东省菏泽市东明县中考数学一模试题(解析版+原卷版)02
    精品解析:2020年山东省菏泽市东明县中考数学一模试题(解析版+原卷版)03
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    精品解析:2020年山东省菏泽市东明县中考数学一模试题(解析版+原卷版)

    展开
    这是一份精品解析:2020年山东省菏泽市东明县中考数学一模试题(解析版+原卷版),文件包含精品解析2020年山东省菏泽市东明县中考数学一模试题原卷版doc、精品解析2020年山东省菏泽市东明县中考数学一模试题解析版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    2020年山东省菏泽市东明县中考数学一模试卷
    一.选择题(共8小题)
    1.的倒数的绝对值是( )
    A. B. - C. 2 D. -2
    【答案】C
    【解析】
    【分析】
    根据倒数和绝对值的定义,可知的倒数是2,2的绝对值还是2.
    【详解】解:的倒数是2,2的绝对值还是2.
    故选C.
    【点睛】本题考查了倒数和绝对值的定义,此题关键是理解倒数和绝对值的定义.
    2.PM2.5是指大气中直径小于或等于毫米的颗粒物,也称为可入肺颗粒物,把用小数形式表示正确的是(  )
    A. 0.000025 B. 0.00025 C. 0.0025 D. 0.025
    【答案】C
    【解析】
    【分析】
    科学记数法的形式是: ,其中<10,为整数.而,所以还原时把小数点往左移动位即可得到答案.
    【详解】解:用小数形式表示正确的是0.0025;
    故选:C.
    【点睛】本题考查的知识点是把用科学记数法表示绝对值较小的数还原,关键是在理解科学记数法的基础上掌握小数点的移动方向与数位.
    3.下列运算正确的是(  )
    A. (x3)2=x5 B. ﹣= C. (x+1)2=x2+1 D. x3•x2=x5
    【答案】D
    【解析】
    【分析】
    根据幂的乘方判定A,
    根据合并同类二次根式判断B,
    根据完全平方公式判断C,
    根据同底数幂的乘法判断D.
    【详解】解:A、原式=x6,不符合题意;
    B、原式不能合并,不符合题意;
    C、原式=x2+2x+1,不符合题意;
    D、原式=x5,符合题意;
    故选:D.
    【点睛】本题考查的是同底数幂的乘法,幂的乘方,完全平方公式,合并同类二次根式,掌握以上知识是解题的关键.
    4.已知是方程组的解,则的值是( )
    A. 10 B. -10 C. 14 D. 21
    【答案】A
    【解析】
    【分析】
    把x=a,y=b,代入方程组,两式相加即可得出答案.
    【详解】把x=a,y=b代入方程组,
    得:
    两式相加得:5a−b=7+3=10.
    故选A
    【点睛】此题考查二元一次方程组的解,解答本题的关键在于x=a,y=b,代入方程组,化简可得答案
    5.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为(  )
    A. 0 B. 0或﹣2 C. ﹣2 D. 2
    【答案】C
    【解析】
    【分析】
    由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.
    【详解】∵一元二次方程mx2+mx﹣=0有两个相等实数根,
    ∴△=m2﹣4m×(﹣)=m2+2m=0,
    解得:m=0或m=﹣2,
    经检验m=0不合题意,
    则m=﹣2.
    故选C.
    【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.
    6.如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△A’O’B’,则点B’的坐标是( ).

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    先通过一次函数解析式求出A,B两点坐标,再求出,从而确定的坐标.
    【详解】∵一次函数解析式为,
    令x=0,则y=2,故B点坐标为(0,2),
    令y=0,则x=,故A点坐标为(,0),
    在Rt△AOB中,

    ∴∠OAB=30°,
    ∵把△AOB绕点A顺时针旋转60°,
    ∴∠,
    ∴,
    ∴的坐标为(,4),
    故选B.
    【点睛】本题是对一次函数知识的考查,熟练掌握一次函数解析式及三角函数知识是解决本题的关键.
    7.如图,在△ABC中,AC=6,AB=4,点D,A在直线BC同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点.若△DCE和△ABC相似,则线段CE的长为( )

    A. B. C. 或3 D. 或4
    【答案】C
    【解析】
    【分析】
    首先由∠ACD=∠ABC,得出∠A=∠DCE,然后由相似三角形的性质得出或,代入即可得解.
    【详解】∵∠ACD=∠ABC,
    ∴∠A=∠DCE,
    ∵△DCE和△ABC相似,
    ∴或
    ∵AC=6,AB=4,CD=2,
    ∴或
    ∴CE长为或3
    故选:C.
    【点睛】此题主要考查相似三角形的性质,解决此问题要注意分类讨论.
    8.如图,矩形的两条对角线相交于点,,,一动点以的速度沿折线运动,设运动时间为,,则与的函数图象大致是(  )

    A B.
    C. D.
    【答案】C
    【解析】
    【详解】∵,∴.
    又∵,
    ∴、是等边三角形,
    ∴等边三角形的高,
    ①点在上时,,为一次函数图象;
    ②点在上时,,
    点到的距离,,为一次函数图象.
    ∵,∴时,有最大值,
    纵观各选项,只有C选项图象符合.
    故选:C
    二.填空题(共6小题)
    9.已知a﹣b=5,ab=1,则a2b﹣ab2的值为_____.
    【答案】5
    【解析】
    【分析】
    先把分解因式,再整体代入求值即可得到答案.
    【详解】解:∵a﹣b=5,ab=1,
    ∴a2b﹣ab2=ab(a﹣b)=5×1=5;
    故答案为:5.
    【点睛】本题考查的是因式分解,代数式的求值,掌握因式分解及整体代入求值是解题的关键.
    10.若关于x的一元一次不等式组有解,则m的取值范围为_____.
    【答案】
    【解析】
    【分析】
    先解不等式组,根据有解确定的大小关系即可得到答案.
    【详解】解: ,
    解①得:x<2m,
    解②得:x>2﹣m,
    根据题意得:,
    解得:m>.
    故答案是:m>
    【点睛】本题考查的是不等式组有解时,字母的取值范围,掌握求解不等式组的解集的方法是解题的关键.
    11.一组数据3,4,x,6,7的平均数为5,则这组数据的方差______.
    【答案】2
    【解析】
    【分析】
    先由平均数的公式求出x的值,再根据方差的公式计算即可.
    【详解】解:数据3,4,x,6,7的平均数为5,

    解得:,
    这组数据为3,4,5,6,7,
    这组数据的方差为:.
    故答案为2.
    【点睛】本题考查方差的定义:一般地设n个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    12.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,则AB=
    _________ cm.

    【答案】
    【解析】
    【详解】连接AC、BC,则∠CAH=30°, AC=,根据勾股定理AH=,故AB=

    13.如图,半径为1的⊙O与正五边形ABCDE相切于点A、C,则劣弧的长度为__________.

    【答案】
    【解析】
    【分析】
    连接OA、OC,如图,根据正多边形内角和公式可求出∠E、∠D,根据切线的性质可求出∠OAE、∠OCD,从而可求出∠AOC,然后根据圆弧长公式即可解决问题.
    【详解】
    连接OA、OC,如图
    ∵五边形ABCDE是正五边形,

    ∵AE、CD与O相切,
    ∴,
    ∴,
    ∴的长为
    故答案
    14.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为_____.

    【答案】(0,256)
    【解析】
    【分析】
    利用锐角三角函数分别计算得到的坐标,利用规律直接得到答案.
    【详解】解:∵l:y=x
    ∴l与x轴的夹角为30°
    ∵AB∥x轴
    ∴∠ABO=30°
    ∵OA=1
    ∴AB=
    ∵A1B⊥l
    ∴∠ABA1=60°
    ∴AA1=3
    ∴A1(0,4)
    同理可得A2(0,16)

    ∴A4纵坐标为44=256
    ∴A4(0,256)
    故答案为:(0,256).
    【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到…的点的坐标是解决本题的关键.
    三.解答题(共10小题)
    15.计算:﹣14+(2016﹣π)0﹣(﹣)﹣1+|1﹣|﹣2sin60°.
    【答案】1
    【解析】
    【分析】
    原式先利用零次幂,负整数指数幂、绝对值及特殊角的三角函数值计算,再合并即可.
    【详解】解:原式=﹣1+1﹣(﹣2)+﹣1﹣2×
    =﹣1+1+2+﹣1﹣
    =1.
    16.先化简,再求值:,其中
    【答案】2
    【解析】
    【分析】
    根据分式的减法和除法可以化简题目中的式子,然后将x=2y代入即可解答本题.
    【详解】原式=
    =
    =
    =.
    当时,原式==2
    【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法.
    17.已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.

    【答案】证明过程见详解.
    【解析】
    【分析】
    连接AF,ED,EF,EF交AD于O,证明四边形AEDF为平行四边形,利用平行四边形的性质可得答案.
    【详解】证明:连接AF,ED,EF,EF交AD于O,

    ∵AE=DF,AE∥DF,
    ∴四边形AEDF为平行四边形;
    ∴EO=FO,AO=DO;
    又∵AB=CD,
    ∴AO﹣AB=DO﹣CD;
    ∴BO=CO;
    又∵EO=FO,
    ∴四边形EBFC是平行四边形.
    【点睛】本题考查的是平行四边形的判定与性质,掌握平行四边形的判定与性质是解题的关键.
    18.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?
    【答案】小红每消耗1千卡能量需要行走30步.
    【解析】
    【分析】
    分析:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数结合小明步行12 000步与小红步行9 000步消耗的能量相同,即可得出关于x的分式方程,解之后经检验即可得出结论.
    【详解】设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,
    根据题意,得

    解得x=30.
    经检验:x=30是原方程的解.
    答:小红每消耗1千卡能量需要行走30步.
    【点睛】本题考查了分式方程的应用,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数列出关于x的分式方程是解题的关键.
    19.在某海域,一艘海监船在P处检测到南偏西45°方向的B处有一艘不明船只,正沿正西方向航行,海监船立即沿南偏西60°方向以40海里/小时的速度去截获不明船只,经过1.5小时,刚好在A处截获不明船只,求不明船只的航行速度.(≈1.41,≈1.73,结果保留一位小数).

    【答案】不明船只的航行速度是14.6海里/小时.
    【解析】
    【分析】
    作PQ垂直于AB的延长线于点Q,在△APQ和△BQP中,利用三角函数的知识分别求出AQ、BQ长,继而可求得AB长,再根据时间即可求出速度.
    【详解】作PQ垂直于AB的延长线于点Q,

    由题意得:∠BPQ=45°,∠APQ=60°,AP=1.5×40=60海里,
    ∴在△APQ中,AQ=AP•sin60°=30海里,PQ=AP•cos60°=30海里,
    ∵在△BQP中,∠BPQ=45°,
    ∴PQ=BQ=30海里,
    ∴AB=AQ﹣BQ=30﹣30≈21.9海里,
    ∴=14.6海里/小时,
    ∴不明船只的航行速度是14.6海里/小时.
    【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.
    20.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于第一象限内的P(,n),Q(4,m)两点,且tan∠BOP=.
    (1)求反比例函数和直线的函数表达式;
    (2)求△OPQ面积.

    【答案】(1)y=-2x+9(2)
    【解析】
    【分析】
    (1)过P作PC⊥y轴于C,由P(,n),得到OC=n,PC=,根据三角函数的定义得到P(,8),于是得到反比例函数的解析式为y=,Q(4,1),解方程组即可得到直线的函数表达式为y=﹣2x+9;
    (2)过Q作OD⊥y轴于D,于得到S△POQ=S四边形PCDQ=.
    【详解】(1)过P作PC⊥y轴于C,∵P(,n),∴OC=n,PC=,
    ∵tan∠BOP=,∴n=8,∴P(,8),设反比例函数的解析式为y=,
    ∴a=4,∴反比例函数的解析式为y=,∴Q(4,1),
    把P(,8),Q(4,1)代入y=kx+b中得,∴,
    ∴直线的函数表达式为y=﹣2x+9;
    (2)过Q作OD⊥y轴于D,则S△POQ=S四边形PCDQ=(+4)×(8﹣1)=.

    【点睛】反比例函数与一次函数的交点问题.
    21.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.

    (1)求证:AE是⊙O的切线;
    (2)如果AB=4,AE=2,求⊙O的半径.
    【答案】(1)见解析;(2)⊙O半径为
    【解析】
    【分析】
    (1)连接OA,利用已知首先得出OA∥DE,进而证明OA⊥AE就能得到AE是⊙O的切线;
    (2)通过证明△BAD∽△AED,再利用对应边成比例关系从而求出⊙O半径的长.
    【详解】解:(1)连接OA,

    ∵OA=OD,
    ∴∠1=∠2.
    ∵DA平分∠BDE,
    ∴∠2=∠3.
    ∴∠1=∠3.∴OA∥DE.
    ∴∠OAE=∠4,
    ∵AE⊥CD,∴∠4=90°.
    ∴∠OAE=90°,即OA⊥AE.
    又∵点A在⊙O上,
    ∴AE是⊙O的切线.
    (2)∵BD是⊙O的直径,
    ∴∠BAD=90°.
    ∵∠5=90°,∴∠BAD=∠5.
    又∵∠2=∠3,∴△BAD∽△AED.
    ∴,
    ∵BA=4,AE=2,∴BD=2AD.
    在Rt△BAD中,根据勾股定理,
    得BD=.
    ∴⊙O半径为.
    22.(2017内蒙古赤峰市)为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:
    (1)求此次抽查的学生人数;
    (2)将图2补充完整,并求图1中的x;
    (3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)

    【答案】(1)40;(2)答案见解析;(3).
    【解析】
    【分析】
    (1)根据百分比=所占人数÷总人数计算即可;
    (2)求出B、C的人数画出条形图即可;
    (3)利用树状图,即可解决问题;
    【详解】(1)此次抽查的学生人数为16÷40%=40人.
    (2)C占40×10%=4人,B占20%,有40×20%=8人,
    条形图如图所示,

    (3)由树状图可知:两名学生为同一类型的概率为.

    【点睛】列表法与树状图法;扇形统计图;条形统计图.
    23.猜想与证明:
    如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.
    拓展与延伸:
    (1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为   .
    (2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.

    【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.
    【解析】


    试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.
    试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,
    ∴∠EFM=∠HAM,
    又∵∠FME=∠AMH,FM=AM,
    在△FME和△AMH中,
    ∴△FME≌△AMH(ASA)
    ∴HM=EM,
    在RT△HDE中,HM=DE,
    ∴DM=HM=ME,
    ∴DM=ME.
    (1)、如图1,延长EM交AD于点H,
    ∵四边形ABCD和CEFG是矩形,
    ∴AD∥EF,
    ∴∠EFM=∠HAM,
    又∵∠FME=∠AMH,FM=AM,
    在△FME和△AMH中,
    ∴△FME≌△AMH(ASA)
    ∴HM=EM,
    在RT△HDE中,HM=EM
    ∴DM=HM=ME,
    ∴DM=ME,
    (2)、如图2,连接AE,
    ∵四边形ABCD和ECGF是正方形,
    ∴∠FCE=45°,∠FCA=45°,
    ∴AE和EC在同一条直线上,
    在RT△ADF中,AM=MF,
    ∴DM=AM=MF,
    在RT△AEF中,AM=MF,
    ∴AM=MF=ME,
    ∴DM=ME.

    考点:(1)、三角形全等的性质;(2)、矩形的性质.
    24.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
    (1)求抛物线的表达式;
    (2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
    (3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

    【答案】(1)抛物线的解析式为:y=﹣x2+x+2
    (2)存在,P1(,4),P2(,),P3(,﹣)
    (3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
    【解析】
    试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;
    (2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;
    (3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.
    试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).
    解得:,
    ∴抛物线的解析式为:y=﹣x2+x+2;
    (2)∵y=﹣x2+x+2,

    ∴y=﹣(x﹣)2+,
    ∴抛物线的对称轴是x=.
    ∴OD=.
    ∵C(0,2),
    ∴OC=2.
    在Rt△OCD中,由勾股定理,得
    CD=.
    ∵△CDP是以CD为腰的等腰三角形,
    ∴CP1=CP2=CP3=CD.
    作CH⊥x轴于H,
    ∴HP1=HD=2,
    ∴DP1=4.
    ∴P1(,4),P2(,),P3(,﹣);
    (3)当y=0时,0=﹣x2+x+2
    ∴x1=﹣1,x2=4,
    ∴B(4,0).
    设直线BC的解析式为y=kx+b,由图象,得

    解得:,
    ∴直线BC的解析式为:y=﹣x+2.
    如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),
    ∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).
    ∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,
    =+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),
    =﹣a2+4a+(0≤x≤4).
    =﹣(a﹣2)2+
    ∴a=2时,S四边形CDBF的面积最大=,
    ∴E(2,1).

    考点:1、勾股定理;2、等腰三角形的性质;3、四边形的面积;4、二次函数的最值



    相关试卷

    2022年山东省菏泽市东明县中考数学一模试卷(学生版+解析版): 这是一份2022年山东省菏泽市东明县中考数学一模试卷(学生版+解析版),共20页。

    精品解析:2020年山东省菏泽市东明县九年级中考二模数学试题(解析版+原卷版): 这是一份精品解析:2020年山东省菏泽市东明县九年级中考二模数学试题(解析版+原卷版),文件包含精品解析2020年山东省菏泽市东明县九年级中考二模数学试题解析版doc、精品解析2020年山东省菏泽市东明县九年级中考二模数学试题原卷版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    精品解析:2020年山东省菏泽市郓城县中考数学二模试题(解析版+原卷版): 这是一份精品解析:2020年山东省菏泽市郓城县中考数学二模试题(解析版+原卷版),文件包含精品解析2020年山东省菏泽市郓城县中考数学二模试题解析版doc、精品解析2020年山东省菏泽市郓城县中考数学二模试题原卷版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map