中考数学《一轮专题讲义》(41专题)第28讲 直角三角形(原卷版)学案
展开考点二十八:直角三角形
聚焦考点☆温习理解
一、直角三角形
1.定义
有一个角是直角的三角形叫作直角三角形
2.性质
(1)直角三角形两锐角互余.
(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(3)在直角三角形中,斜边上的中线等于斜边的一半.
3.判定
(1)两个内角互余的三角形是直角三角形.
(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.
二、勾股定理及逆定理
1. 勾股定理:
直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2;
2. 勾股定理的逆定理
如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.
三、直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,除了有一般三角形全等的判定方法,还有HL定理(斜边、直角边定理):
有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
名师点睛☆典例分类
考点典例一、直角三角形的判定
【例1】(2017-2018学年山东省诸城市桃林镇桃林初中期末模拟)下列条件不能判定一个三角形为直角三角形的是( )
A. 三个内角之比为1:2:3 B. 一边上的中线等于该边的一半
C. 三边为 、 、 D. 三边长为m2+n2、m2﹣n2、2mn(m≠0,n≠0)
【举一反三】
(2018年广西防城港市中考模拟)如图,△ABC中,CD⊥AB,垂足为D.下列条件中,能证明△ABC是直角三角形的有 (多选、错选不得分).
①∠A+∠B=90°
②AB2=AC2+BC2
③
④CD2=AD•BD.
(2018·保定模拟)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪一灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.
证明:连接DB,过点D作BC边上的高DF,则DF=EC=b-a.
∵S四边形ADCB=S△ACD+S△ABC=b2+ab,
又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b-a),
∴b2+ab=c2+a(b-a).
∴a2+b2=c2.
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.
考点典例二、直角三角形的性质
【例2】(2018江苏南京中考模拟)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于( )
A.2 B. C. D.
【举一反三】
我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )
A. 20 B. 24 C. D.
考点典例三、直角三角形斜边上的中线
【例3】(2019•湖南邵阳•3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于( )
A.120° B.108° C.72° D.36°
【举一反三】
(2018•杨浦区一模)如图,Rt△ABC中,∠C=90°,M是AB中点,MH⊥BC,垂足为点H,CM与AH交于点O,如果AB=12,那么CO= .
考点典例四、解直角三角形
【例4】(2018浙江衢州中考模拟)如图,把个边长为1的正方形拼接成一排,求得,,,计算 ,……按此规律,写出 (用含的代数式表示).
【举一反三】
某游乐场一转角滑梯如图所示,滑梯立柱AB、CD均垂直于地面,点E在线段BD上,在C点测得点A的仰角为30°,点E的俯角也为30°,测得B、E间距离为10米,立柱AB高30米.求立柱CD的高(结果保留根号)
课时作业☆能力提升[来源:学|科|网Z|X|X|K]
一、选择题
1. 在中,,于,平分交于,则下列结论一定成立的是( )
A. B. C. D.
点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.
2. 在直角三角形中,若勾为3,股为4,则弦为( )
A. 5 B. 6 C. 7 D. 8
3. (浙江省宁波市李兴贵中学2017-2018学年八年级上册期末模拟)直角三角形两直角边长为a,b,斜边上高为h,则下列各式总能成立的是( )
A. ab=h2 B. a2+b2=2h2 C. D.
4. (华师大版九年级数学下册:2018年中考模拟)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得(单位:尺),则井深为( )
A. 1.25尺 B. 57.5尺 C. 6.25尺 D. 56.5尺
5. (2018•金山区一模)在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是( )
A.r<5 B.r>5 C.r<10 D.5<r<10
二、填空题
6. (吉林省实验中学2018年九年级第二学期第一次模拟数学试卷)已知在中,BC=6,AC=, A=30°,则AB的长是________________.
7. (山东省平邑县阳光中学2018届九年级一轮复习)如图,平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,若AE=6,AF=4,cos∠EAF=,则CF=______.学!科网
8.在△ABC中,∠B=30°,AB=12,AC=6,则BC= .
9. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.
(1)的大小为__________(度);
(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.
10. (浙江省平阳县2017-2018学年九年级第一学期第二次阶段检测数学数学试题)如图以直角三角形ABC的斜边BC为边在三角形ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6,则AC= ________
11. (天津市南开区育红中学 2018年九年级数学中考夯基卷)某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .
三、解答题
12. (2018•崇明县一模)如图,已知△ABC中,∠ACB=90°,AC=8,cosA=,D是AB边的中点,E是AC边上一点,联结DE,过点D作DF⊥DE交BC边于点F,联结EF.
(1)如图1,当DE⊥AC时,求EF的长;
(2)如图2,当点E在AC边上移动时,∠DFE的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出∠DFE的正切值;
(3)如图3,联结CD交EF于点Q,当△CQF是等腰三角形时,请直接写出BF的长.
13. (2019•河北)已知:整式A=(n2-1)2+(2n)2,整式B>0.
尝试化简整式A.
发现A=B2,求整式B.
联想由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:
直角三角形三边 | n2-1 | 2n | B |
勾股数组Ⅰ | / | 8 | __________ |
勾股数组Ⅱ | 35 | / | __________ |
14在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.
(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是 ,与的位置关系是 ;
(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,
请说明理由(选择图2,图3中的一种情况予以证明或说理).
(3) 如图4,当点在线段的延长线上时,连接,若 , ,求四边形的面积.
15. (2019•枣庄)在中,,,于点.
(1)如图1,点,分别在,上,且,当,时,求线段AM的长;
(2)如图2,点,分别在,上,且,求证:;
(3)如图3,点在的延长线上,点在上,且,求证:.
中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(原卷版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(原卷版)学案,共7页。学案主要包含了实数的运算,非负数的性质,实数的大小比较等内容,欢迎下载使用。
中考数学《一轮专题讲义》(41专题)第19讲 统计的应用(原卷版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第19讲 统计的应用(原卷版)学案,共12页。学案主要包含了条形统计图与折线统计图,扇形统计图,频数分布直方图,利用统计量解决实际问题等内容,欢迎下载使用。
中考数学《一轮专题讲义》(41专题)第17讲 统计初步(原卷版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第17讲 统计初步(原卷版)学案,共12页。学案主要包含了平均数,统计学中的几个基本概念,众数,方差等内容,欢迎下载使用。