中考数学《一轮专题讲义》(41专题)第38讲 与圆有关的概念(原卷版)学案
展开这是一份中考数学《一轮专题讲义》(41专题)第38讲 与圆有关的概念(原卷版)学案,共7页。学案主要包含了垂径定理,求弦心距,最短路线问题等内容,欢迎下载使用。
中考数学一轮复习讲义
考点三十八:与圆有关的概念
聚焦考点☆温习理解
1、圆的定义
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、弦
连接圆上任意两点的线段叫做弦。(如图中的AB)
3.直径
经过圆心的弦叫做直径。(如图中的CD)
直径等于半径的2倍。
4.半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
5.弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
5、垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。[来源:Zxxk.Com]
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
6、圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
3、弦心距
从圆心到弦的距离叫做弦心距。
名师点睛☆典例分类
考点典例一、垂径定理
【例1】(2019•广西北部湾经济区•3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为______寸.
【举一反三】
(2018年湖北省黄梅濯港镇中心学校数学中考模拟)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是( )
A. ①③ B. ②③ C. ①④ D. ②④
考点典例二、求弦心距
【例2】(2018贵州黔东南中考模拟)小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )
A.cm B.cm C.cm D.cm
【举一反三】
如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD. 已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于( )
A. B. C. 4 D. 3
考点典例三、最短路线问题
【例3】(2019年黄冈市中考模拟)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为( )
A. B.1 C. 2 D. 2[来源:学科网ZXXK]
【举一反三】
(2018浙江温州中考模拟)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )
A. 6 B. C. 9 D.
课时作业☆能力提升
一.选择题
1.(山东省济南市长清区2018届九年级3月质量(模拟)检测数学试题)如图,直径为10的经过点C和点O,点B是y轴右侧优弧上一点,∠OBC=30°,则点C的坐标为( )
A. B. C. D.
2. 如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为( )
A. 35° B. 45° C. 55° D. 65°
3.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( )
A. B. C. 或 D. 或
4. (2019•黄冈)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40 m,点C是的中点,且CD=10 m,则这段弯路所在圆的半径为
A.25 m B.24 m C.30 m D.60 m
5. 如图,MN是⊙O的直径,点A是半圆上的三等分点,点B是劣弧AN的中点,点P是直径MN上一动点.若MN=2,则PA+PB的最小值是( )
A.2 B. C.1 D.2
6. (西藏拉萨北京实验中学等四校2018届九年级第一次联考数学试题)如图,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于( )
A. 80 B. 60 C. 50 D. 40
二.填空题
7. (安徽省合肥市2018届九年级第五次十校联考)如图,⊙O是△ABC的外接圆,∠BAC=120°,若⊙O的半径为2,则弦BC的长为__________.
8. (新疆乌鲁木齐市第九十八中学2018届九年级下学期第一次模拟考试)如图,△ABC是⊙O的内接锐角三角形,连接AO,设∠OAB=α,∠C=β,则α+β=______°。
9. (天津市和平区 汇文中学 2018年九年级数学中考夯基卷)如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=54°,则∠BAD= .
10. (2017浙江嘉兴第13题)如图,小明自制一块乒乓球拍,正面是半径为的,,弓形(阴影部分)粘贴胶皮,则胶皮面积为 .
11. (2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为__________寸.
12. 如图,△ABC内接于⊙O,,点为上的动点,且.
(1)求的长度;
(2)在点D运动的过程中,弦AD的延长线交BC的延长线于点E,问AD•AE的值是否变化?若不变,请求出AD•AE的值;若变化,请说明理由.
(3)在点D的运动过程中,过A点作AH⊥BD,求证:.
相关学案
这是一份中考数学《一轮专题讲义》(41专题)第01讲 实数及有关概念(解析版)学案,共16页。学案主要包含了倒数,科学记数法和近似数,平方根,立方根,实数的分类,绝对值,相反数等内容,欢迎下载使用。
这是一份中考数学《一轮专题讲义》(41专题)第38讲 与圆有关的概念(解析版)学案,共16页。学案主要包含了垂径定理,求弦心距,最短路线问题等内容,欢迎下载使用。
这是一份中考数学《一轮专题讲义》(41专题)第39讲 与圆有关的角(解析版)学案,共25页。学案主要包含了圆周角与垂径定理的关系,解答题等内容,欢迎下载使用。