2020-2021福州市时代中学初三数学上期中一模试卷附答案
展开一、选择题
1.下列事件中,属于必然事件的是( )
A.随时打开电视机,正在播新闻
B.优秀射击运动员射击一次,命中靶心
C.抛掷一枚质地均匀的骰子,出现4点朝上
D.长度分别是3cm,5cm,6cm的三根木条首尾相接,组成一个三角形
2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
A.B.C.D.
3.下列图形中是中心对称图形但不是轴对称图形的是( )
A.B.C.D.
4.如果关于的方程有两个不相等的实数根,那么在下列数值中,可以取的是( )
A.3B.5C.6D.8
5.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )
A.(x+3)2=1B.(x﹣3)2=1
C.(x+3)2=19D.(x﹣3)2=19
6.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )
A.B.C.D.
7.若,则不论取何值,一定有( )
A.B.C.D.
8.将函数y=kx2与y=kx+k的图象画在同一个直角坐标系中,可能的是( )
A.B.C.D.
9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:
①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.
其中正确的个数为
A.1B.2C.3D.4
10.如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是( )
A.B.C.D.
11.长方形的周长为,其中一边长为,面积为则长方形中与的关系式为( )
A.B.C.D.
12.如果反比例函数(a是常数)的图象在第一、三象限,那么a的取值范围是( )
A.a<0B.a>0C.a<2D.a>2
二、填空题
13.已知:如图,是的直径,切于点,的延长线交于点,,则________度.
14.圆锥的底面半径为14cm,母线长为21cm,则该圆锥的侧面展开图的圆心角为_____ 度.
15.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多______步.
16.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.
17.若关于 x 的一元二次方程2x2-x+m=0 有两个相等的实数根,则 m 的值为__________.
18.Rt△ABC中,∠C=90°,若直角边AC=5,BC=12,则此三角形的内切圆半径为________.
19.用半径为12cm,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_______cm.
20.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为 米.
三、解答题
21.某商场销售某种型号防护面罩,进货价为40元/个.经市场销售发现:售价为50元/个时,每周可以售出100个,若每涨价1元,就会少售出5个.供货厂家规定市场售价不得低于50元/个,且商场每周销售数量不得少于80个.
(1)确定商场每周销售这种型号防护面罩所得的利润w(元)与售价x(元/个)之间的函数关系式.
(2)当售价x(元/个)定为多少时,商场每周销售这种防护面罩所得的利润w(元)最大?最大利润是多少?
22.解方程
(1) (2) x(3-2x)= 4 x-6
23.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.
(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ;
(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)
24.我国古代数学著作《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔各几何?”其大意是:“一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的各是多少步?”试用列方程解应用题的方法求出问题的解。
25.如图,四边形内接于⊙,,.
(1)求点到的距离;
(2)求的度数.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
分析:根据事件发生的可能性大小判断相应事件的类型即可.
详解:A.是随机事件,故A不符合题意;
B.是随机事件,故B不符合题意;
C.是随机事件,故C不符合题意;
D.是必然事件,故D符合题意.
故选D.
点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.
2.B
解析:B
【解析】
由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
故选B.
3.B
解析:B
【解析】
【分析】
根据轴对称图形与中心对称图形的概念逐一判断即可得答案.
【详解】
A.不是中心对称图形,是轴对称图形,不符合题意,
B.是中心对称图形,不是轴对称图形,符合题意,
C.不是中心对称图形,是轴对称图形,不符合题意,
D.是中心对称图形,也是轴对称图形,不符合题意.
故选:B.
【点睛】
本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4.A
解析:A
【解析】
【分析】
根据根的判别式的意义得到16﹣4m>0,然后解不等式得到m<4,然后对各选项进行判断.
【详解】
根据题意得:△=16﹣4m>0,解得:m<4,所以m可以取3,不能取5、6、8.
故选A.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
5.D
解析:D
【解析】
【分析】
方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.
【详解】
方程移项得:,
配方得:,
即,
故选D.
6.A
解析:A
【解析】
【分析】
画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.
【详解】
画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)
共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,
∴从中随机抽取2本都是小说的概率==.
故选:A.
【点睛】
本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.
7.D
解析:D
【解析】
【分析】
由﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3可得:x≤﹣3.
【详解】
∵x=﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3≤﹣3,∴不论a取何值,x≤﹣3.
故选D.
【点睛】
本题考查了配方法的应用,熟练运用配方法解答本题的关键.
8.C
解析:C
【解析】
【分析】
根据题意,利用分类讨论的方法,讨论k>0和k<0,函数y=kx2与y=kx+k的图象,从而可以解答本题.
【详解】
当k>0时,
函数y=kx2的图象是开口向上,顶点在原点的抛物线,y=kx+k的图象经过第一、二、三象限,是一条直线,故选项A、B均错误,
当k<0时,
函数y=kx2的图象是开口向下,顶点在原点的抛物线,y=kx+k的图象经过第二、三、四象限,是一条直线,故选项C正确,选项D错误,
故选C.
【点睛】
本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
9.B
解析:B
【解析】
分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误。
当x=1时,y=1+b+c=1,故②错误。
∵当x=3时,y=9+3b+c=3,∴3b+c+6=0。故③正确。
∵当1<x<3时,二次函数值小于一次函数值,
∴x2+bx+c<x,∴x2+(b﹣1)x+c<0。故④正确。
综上所述,正确的结论有③④两个,故选B。
10.B
解析:B
【解析】
分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.
详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;
B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0.故选项正确;
C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交.故选项错误;
D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.
故选B.
点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.
11.C
解析:C
【解析】
【分析】
根据周长关系求出另一边的长,再用面积公式即可表示y与x的函数.
【详解】
∵长方形的周长为,其中一边长为,
∴另一边为12-x,
故面积则长方形中与的关系式为
故选C
【点睛】
此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.
12.D
解析:D
【解析】
【分析】
反比例函数图象在一、三象限,可得.
【详解】
解:反比例函数(a是常数)的图象在第一、三象限,
,
.
故选:D.
【点睛】
本题运用了反比例函数图象的性质,解题关键要知道k的决定性作用.
二、填空题
13.55【解析】【分析】连接BC由CD是⊙O的直径知道∠CBD=90°由AE是⊙O的切线知道∠DBE=∠1∠2=∠D又∠1+∠D=90°即∠1+∠2=90°;而∠A+∠2=∠1由此即可求出∠1即求出∠D
解析:55
【解析】
【分析】
连接BC,由CD是⊙O的直径知道∠CBD=90°,由AE是⊙O的切线知道∠DBE=∠1,∠2=∠D,又∠1+∠D=90°,即∠1+∠2=90°;而∠A+∠2=∠1,由此即可求出∠1,即求出∠DBE.
【详解】
如图,连接BC,
∵CD是⊙O的直径,
∴∠CBD=90°,
∵AE是⊙O的切线,
∴∠DBE=∠1,∠2=∠D;
又∵∠1+∠D=90°,
即∠1+∠2=90°①,
∠A+∠2=∠1②,
-②得∠1=55°
即∠DBE=55°.
故答案为:∠DBE=55°.
【点睛】
本题考查的是弦切角的性质及圆周角定理,三角形内角与外角的关系,是一道较简单的题目.
14.240【解析】【分析】根据弧长=圆锥底面周长=28πcm圆心角=弧长180母线长π计算【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm扇形的圆心角=弧长×180÷母线长÷π=28π×
解析:240
【解析】
【分析】
根据弧长=圆锥底面周长=28πcm,圆心角=弧长180母线长π计算.
【详解】
解:由题意知:弧长=圆锥底面周长=2×14π=28πcm,
扇形的圆心角=弧长×180÷母线长÷π=28π×180÷21π=240°.
故答案为:240.
【点睛】
此题主要考查弧长=圆锥底面周长及弧长与圆心角的关系,熟练掌握公式及关系是解题关键.
15.12【解析】【分析】设长为x步宽为(60-x)步根据长方形的面积公式列出方程进行求解即可得【详解】设长为x步宽为(60-x)步x(60-x)=864解得x1=36x2=24(舍去)∴当x=36时60
解析:12
【解析】
【分析】
设长为x步,宽为 (60-x) 步,根据长方形的面积公式列出方程进行求解即可得.
【详解】
设长为x步,宽为(60-x) 步,
x(60-x)=864 ,
解得,x1=36,x2=24(舍去),
∴当x=36 时,60-x=24 ,
∴长比宽多:36-24=12 (步),
故答案为:12.
【点睛】
本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
16.(42)【解析】【分析】利用图象旋转和平移可以得到结果【详解】解:∵△CDO绕点C逆时针旋转90°得到△CBD′则BD′=OD=2∴点D坐标为(46);当将点C与点O重合时点C向下平移4个单位得到△
解析:(4,2).
【解析】
【分析】
利用图象旋转和平移可以得到结果.
【详解】
解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,
则BD′=OD=2,
∴点D坐标为(4,6);
当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,
∴点D向下平移4个单位.故点D′′坐标为(4,2),
故答案为(4,2).
【点睛】
平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.
定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.
17.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故
解析:
【解析】
【分析】
根据“关于x的一元二次方程2x2-x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.
【详解】
根据题意得:
△=1-4×2m=0,
整理得:1-8m=0,
解得:m=,
故答案为:.
【点睛】
本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.
18.2【解析】【分析】设ABBCAC与⊙O的切点分别为DFE;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB)由此可求出r的长【详解】解:如图;在Rt△ABC∠
解析:2
【解析】
【分析】
设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB),由此可求出r的长.
【详解】
解:如图;
在Rt△ABC,∠C=90°,AC=5,BC=12;
根据勾股定理AB=
四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;
∴四边形OECF是正方形;
由切线长定理,得:AD=AE,BD=BF,CE=CF;
∴CE=CF=(AC+BC-AB);
即:r=(5+12-13)=2.
故答案为2.
19.【解析】【分析】根据扇形的弧长等于圆锥的底面周长利用扇形的弧长公式即可求得圆锥的底面周长然后根据圆的周长公式即可求解【详解】解:圆锥的底面周长是:=6π设圆锥底面圆的半径是r则2πr=6π则r=3故
解析:【解析】
【分析】
根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.
【详解】
解:圆锥的底面周长是:=6π,设圆锥底面圆的半径是r,则2πr=6π,则r=3.
故答案为:3.
【点睛】
本题考查圆锥的计算.
20.【解析】试题分析:设小道进出口的宽度为x米依题意得(30-2x)(20-x)=532整理得x2-35x+34=0解得x1=1x2=34∵34>30(不合题意舍去)∴x=1答:小道进出口的宽度应为1米
解析:【解析】
试题分析:设小道进出口的宽度为x米,依题意得(30-2x)(20-x)=532,
整理,得x2-35x+34=0.
解得,x1=1,x2=34.
∵34>30(不合题意,舍去),
∴x=1.
答:小道进出口的宽度应为1米.
考点:一元二次方程的应用.
三、解答题
21.(1);(2)当售价定为54元时,每周获得的利润最大,最大利润为1120元.
【解析】
【分析】
(1)根据所得利润=每件利润×销售量,可以列出w与x之间的函数关系式并化简为二次函数一般形式;
(2)由市场售价不得低于50元/个,且商场每周销售数量不得少于80个的销售任务可以确定x的取值范围,然后结合二次函数图像性质可以解答本题.
【详解】
解:(1)根据题意,得
,
因此,利润与售价之间的函数关系式为
(2)∵销售量不得少于80个,
∴100-5(x-50)≥80,
∴x≤54,
∵x≥50,
∴50≤x≤54,
∵a=-5<0,开口向下,对称轴为直线x=55,
∴当50≤x≤54时,w随着x的增大而增大,
∴当x=54时,
w最大值=,
因此,当售价定为54元时,每周获得的利润最大,最大利润为1120元.
【点睛】
本题考查二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.
22.(1) ;(2) .
【解析】
【分析】
(1)将方程移项得,在等式两边同时加上一次项系数一半的平方1,即可得出结论;(2)将方程移项得,提公因式后,即可得出结论.
【详解】
解:(1),
移项,得:,
等式两边同时加1,得:,
即:,
解得:,,
(2),
移项,得:,
提公因式,得:,
解得:,,
故答案为:(1),;(2),.
【点睛】
本题考查配方法、因式分解法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.因式分解法的一般步骤:(1)移项,将方程右边化为0;(2)再把左边运用因式分解法化为两个一次因式的积;(3)分别令每个因式等于零,得到一元一次方程组;(4)分别解这两个一元一次方程,得到方程的解.
23.(1)经过第一次传球后,篮球落在丙的手中的概率为;(2)篮球传到乙的手中的概率为.
【解析】
【分析】
(1)根据概率公式即可得出答案;
(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案.
【详解】
(1)经过第一次传球后,篮球落在丙的手中的概率为;
故答案为:;
(2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,
∴篮球传到乙的手中的概率为.
【点睛】
本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
24.该矩形长36步,宽24步.
【解析】试题分析:如果设矩形田地的长为x步,那么宽就应该是(x-12)步,根据矩形面积864=矩形的长×矩形的宽4,即可得出方程求解即可.
解:设矩形长为x步,宽为(x-12)步
x(x-12)=864
x2-12x-864=0
解得x1=36,x2=-24(舍)
∴x-12=24
答:该矩形长36步,宽24步
25.(1)2;(2)135°.
【解析】
【分析】
(1)作OM⊥AC于M,根据等腰直角三角形的性质得到AM=CM=2,根据勾股定理即可得到结论;
(2)连接OA,根据等腰直角三角形的性质得到∠MOC=∠MCO=45°,求得∠AOC=90°,根据圆内接四边形的性质即可得到结论.
【详解】
(1)作于,
∵,
∴,
∵,
∴;
(2)连接,
∵,,
∴,
∵,
∴,
∴,
∴,
∵,
∴.
【点睛】
本题考查了垂径定理,勾股定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.
2023-2024学年福建省福州市时代中学数学九上期末达标测试试题含答案: 这是一份2023-2024学年福建省福州市时代中学数学九上期末达标测试试题含答案,共7页。
2023.3.21北师大附实验初三数学统练答案(零模): 这是一份2023.3.21北师大附实验初三数学统练答案(零模),共14页。
2022年福建省福州市仓山区时代中学中考数学质检试卷(含解析): 这是一份2022年福建省福州市仓山区时代中学中考数学质检试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。