![2021-2022学年度浙教版九年级数学上册教案3.3.1 垂径定理01](http://img-preview.51jiaoxi.com/2/3/12305160/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度浙教版九年级数学上册教案3.3.1 垂径定理02](http://img-preview.51jiaoxi.com/2/3/12305160/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学浙教版九年级上册3.3 垂径定理教学设计
展开第1课时 垂径定理
1、通过实验观察,让学生理解圆的轴对称性;掌握垂径定理,理解其探索和证明过程;能初步运用垂径定理解决有关的计算和证明问题.
2、在研究过程中,进一步体验“实验—归纳—猜想—证明”的方法;在解题过程中,注重发散思维的培养,同一个问题会从不同的角度去分析解决.
3、通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱.
教学重点
使学生掌握垂径定理、记住垂径定理的题设和结论.
教学难点
对垂径定理的探索和证明,在解决问题时想到用垂径定理.
一、导入新课
1、我们已经学习了圆怎样的对称性质?(中心对称)
2、实验:探究圆的轴对称性.
若将⊙O沿直径对折,观察两部分是否重合?让学生用自己准备好的圆形纸片亲自实验,教师引导学生努力发现:
圆是轴对称图形,过圆心的任意一条直线(或直径所在的直线)都是它的对称轴.
3、引入新知:如图,左图中AB是⊙O的弦,直径CD与弦AB相交,那么沿直径CD所在的直线折叠之后,图形可以重合吗?右图中,AB是⊙O的弦,直径CD⊥AB,垂足为E.此时再沿直径CD所在直线折叠,图形可以重合吗?
(重合,说明此图也是轴对称图形,称这种处于特殊位置的直径称为垂直于弦的直径),引出本节课研究的内容.
二、探索新知
(一)猜想,证明,形成垂径定理
1、提问:继续观察右图,根据圆的对称性,把圆沿直径CD所在的直线折叠之后,圆中的线段和弧会出现怎样的位置关系?同时出现怎样的数量关系?
2、猜想:可能出现的位置关系是:
线段AE和线段BE重合,弧AC和弧BC重合,弧AD和弧BD重合.
可能出现的数量关系是:
3、证明:
利用等腰三角形三线合一的性质或者三角形全等的知识来证明线段AE与线段BD相等,利用圆的对称性证明对应弧相等.板书:
4、引导学生归纳总结垂径定理的文字表述,板书:
垂直于弦的直径平分弦,并且平分弦所对的两条弧.
(二)分析垂径定理的条件和结论
1、再次明确垂径定理的条件和结论加深学生的印象.
2、利用反例、变式图形对定理进一步引申,揭示定理的本质属性,以加深学生对定理本质的了解.
练习:在下列图形中,能使用垂径定理的图形有哪些?
3、引申定理:定理中垂直于弦的直径可以是直径、半径,也可以是过圆心的直线或线段.
(三)例题
例1 已知AB,如图,用直尺和圆规求作这条弧的中点.(先介绍弧中点概念)
作法:
⒈连结AB.
⒉作AB的垂直平分线 CD, 交弧AB于点E.
点E就是所求弧AB的中点.
变式一: 求弧AB的四等分点.
思路:先将弧AB平分,再用同样方法将弧AE、弧BE平分.
(图略)
有一位同学这样画,错在哪里?
1.作AB的垂直平分线CD
2.作AT、BT的垂直平分线EF、GH(图略)
教师强调:等分弧时一定要作弧所对的弦的垂直平分线.[来源:www.shulihua.net]
变式二:你能确定弧AB的圆心吗?
方法:只要在圆弧上任意取三点,得到三条弦,画其中两条弦的垂直平分线,交点即为圆弧的圆心.
例2 一条排水管的截面如图所示.排水管的半径OB=10,水面宽AB=16,求截面圆心O到水面的距离OC .
思路:
先作出圆心O到水面的距离OC,即画 OC⊥AB,∴AC=BC=8,[来源:www.shulihua.net]
在Rt△OCB中,
∴圆心O到水面的距离OC为6.
例3 已知:如图,线段AB与⊙O交于C、D两点,且OA=OB .求证:AC=BD .
思路:
作OM⊥AB,垂足为M, ∴CM=DM
∵OA=OB , ∴AM=BM , ∴AC=BD.
概念:圆心到圆的一条弦的距离叫做弦心距.
小结:
1.画弦心距是圆中常见的辅助线; [来源:www.shulihua.net]
2.半径(r)、半弦、弦心距(d)组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长.
注:弦长、半径、弦心距三个量中已知两个,就可以求出第三个.[来源:www.shulihua.netwww.shulihua.net]
做一做
1.已知⊙0的半径为13,一条弦的AB的弦心距为5,则这条弦的弦长等于 .
答案:24
2.如图,AB是⊙0的中直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是( )
A.∠COE=∠DOE B.CE=DE C.OE=BE D.BD=BC
[来源:www.shulihua.net]
答案:C
3.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )
A.3 B.6cm C. cm D.9cm [来源:www.shulihua.net]
答案:A
注:圆内过定点M的弦中,最长的弦是过定点M的直径,最短的弦是过定点M与OM垂直的弦,此结论最好让学生记住,课本作业题也有类似的题目.
4.如图,⊙O的直径为10,弦AB长为8,M是弦AB上的动点,则OM的长的取值范围是( )
A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5
答案:A
5. 已知⊙O的半径为10,弦AB∥CD,AB=12,CD=16,则AB和CD的距离为 .[来源:数理化网]
答案:2或24
注:要分两种情况讨论:(1)弦AB、CD在圆心O的两侧;(2)弦AB、CD在圆心O的同侧.
6.如图,已知AB、AC为弦,OM⊥AB于点M, ON⊥AC于点N ,BC=4,求MN的长.[来源:数理化网]
思路:由垂径定理可得M、N分别是AB、AC的中点,
所以MN=BC=2.
三、归纳小结
1.本节课主要内容:(1)圆的轴对称性;(2)垂径定理.
2.垂径定理的应用:(1)作图;(2)计算和证明.
3.解题的主要方法:
(1)画弦心距是圆中常见的辅助线;
(2)半径(r)、半弦、弦心距(d)组成的直角三角形是研究与圆有关问题的主要思路,它们之间的关系:弦长.
请完成本课时对应练习!
初中数学浙教版九年级上册第3章 圆的基本性质3.3 垂径定理优秀教学设计及反思: 这是一份初中数学浙教版九年级上册第3章 圆的基本性质3.3 垂径定理优秀教学设计及反思,共4页。教案主要包含了复习引入,新课,小结等内容,欢迎下载使用。
初中数学浙教版九年级上册3.3 垂径定理教案设计: 这是一份初中数学浙教版九年级上册3.3 垂径定理教案设计,共8页。教案主要包含了提炼概念,典例精讲等内容,欢迎下载使用。
浙教版九年级上册3.3 垂径定理教案设计: 这是一份浙教版九年级上册3.3 垂径定理教案设计,共3页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。