|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年北师大版九年级数学上学期期中综合复习模拟测试题(word版含答案)
    立即下载
    加入资料篮
    2021-2022学年北师大版九年级数学上学期期中综合复习模拟测试题(word版含答案)01
    2021-2022学年北师大版九年级数学上学期期中综合复习模拟测试题(word版含答案)02
    2021-2022学年北师大版九年级数学上学期期中综合复习模拟测试题(word版含答案)03
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年北师大版九年级数学上学期期中综合复习模拟测试题(word版含答案)

    展开
    这是一份2021-2022学年北师大版九年级数学上学期期中综合复习模拟测试题(word版含答案),共19页。试卷主要包含了下列说法中,错误的是,定义运算等内容,欢迎下载使用。

    2021-2022学年北师大版九年级数学第一学期期中综合复习模拟测试题(附答案)
    一.选择题(共10小题,满分30分)
    1.如果实数a,b,c,d满足=,下列四个选项中,正确的是(  )
    A.= B.= C.= D.=
    2.下列说法中,错误的是(  )
    A.矩形的对角线相等 B.对角线互相垂直的四边形是菱形
    C.菱形的四条边相等 D.四个内角都相等的四边形是矩形
    3.如图,正方形ABCD中,E为对角线BD上一点,∠BEC=70°,那么∠DAE=(  )

    A.10° B.15° C.25° D.30°
    4.用配方法解方程x2﹣6x﹣5=0时,配方结果正确的是(  )
    A.(x﹣3)2=4 B.(x﹣6)2=41 C.(x+3)2=14 D.(x﹣3)2=14
    5.某地为发展教育事业,加强了对教育经费的投入,2019年投入4000万元,预计2021年投入6000万元,设教育经费的年平均增长率为x,下面所列方程正确的是(  )
    A.4000(1+x)2=6000 B.4000x2=6000
    C.4000(1+x%)2=6000 D.4000(1+x)+4000(1+x)2=6000
    6.定义运算:a※b=3ab2﹣4ab﹣2.例如:4※2=3×4×22﹣4×4×2﹣2=14.则方程2※x=0的根的情况为(  )
    A.有两个相等的实数根 B.有两个不相等的实数根
    C.无实数根 D.无法确定
    7.如图,已知直线l1∥l2∥l3,直线m、n分别与直线l1、l2、l3分别交于点A、B、C、D、E、F,若DE=3,DF=8,则的值为(  )

    A. B. C. D.
    8.如图,添加下列一个条件后,仍无法判定△ABC∽△ADE的是(  )

    A.∠C=∠AED B.∠B=∠ADE
    C.AE•AB=AD•AC D.AE•AC=AD•AB
    9.如图,已知在△ABC中,AB=14,BC=12,AC=10,D是AC上一点,过点D画一条直线l,把△ABC分成两部分,使其中的一个三角形与△ABC相似,这样的直线有几条(  )

    A.2 B.3 C.3或4 D.4
    10.如图,在矩形内画了一些直线,已知△ADH,△BEF,四边形HGFC的面积分别是12、32、96,那么图中阴影部分的面积是(  )

    A.48 B.52 C.60 D.108
    二.填空题(共10小题,满分30分)
    11.如图,在四边形ABCD中,AD∥BC,AB=AD,下列条件①AC⊥BD;②OA=OC;③AC平分∠BCD;④∠ABC=∠ADC,能判定四边形ABCD是菱形的有    .(填写序号)

    12.已知:如图,在矩形ABCD中,点E在AD边上,且EC平分∠BED,若AB=1,BC=,则∠ECD=   °.

    13.一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是   .
    14.若x1,x2方程x2﹣4x﹣2021=0的两个实数根,则代数式x12﹣2x1+2x2的值等于   .
    15.已知一个三角形的两边长是3和4,第三边的长是方程x2﹣6x+5=0的一个根,则该三角形的周长是   .
    16.某小区开展“新农村”建设,今年8月份改造绿化面积为6400m2,到了今年10月份增加到8100m2,假设改造绿化面积月平均增长率都相同,则增长率为   .
    17.现有三个献血者,其中两人血型为O型,一人为A型,若在三人中随机挑选一人献血,两年后又从此三人中随机挑选一人献血,那么两次献血的人血型均为O型的概率是  .
    18.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:
    ①在点M的运动过程中,四边形CEMD可能成为菱形;
    ②连接HM,无论点M运动到何处,都有DM=HM;
    ③点M位置变化,连接HD,使得∠DHC=60°时,2BE=DM;
    ④无论点M运动到何处,∠CHM一定大于135°;
    以上结论正确的有   (把所有正确结论的序号都填上).

    19.复印纸型号多样,而各型号复印纸之间存在这样的关系:将其中一型号纸张(如A3纸)沿较长边中点的连线对折,就能得到下一型号(A4纸)的纸张,且对折得到的两个矩形和原来的矩形相似(即A3纸与A4纸相似),则这些型号的复印纸宽与长之比为   .

    20.如图,AB⊥BD,CD⊥BD,AB=6,CD=4,BD=14.点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,则PB的长为   .

    三.解答题(共6小题,满分60分)
    21.已知关于x的一元二次方程x2﹣2kx+k2+k=0有实数根.
    (1)求k的取值范围;
    (2)设此方程的两个根分别为x1,x2,若x12+x22+3x1x2=6,求k的值.
    22.阅读并解决问题:对于二次三项式x2+4x﹣12,因不能直接运用完全平方公式,此时,我们可以在x2+4x﹣12中先加上一项4,使它与x2+4x的和成为一个完全平方式,再减去4,整个式子的值不变,于是有:x2+4x﹣12=(x2+4x+4)﹣4﹣12=(x+2)2﹣42=(x+6)(x﹣2).像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
    (1)利用“配方法”分解因式:x2﹣6x+5.
    (2)同时运用多项式的配方法能确定一些多项式的最大值或最小值.因为不论x取何值,(x+2)2≥0,所以当x=﹣2时,多项式x2+4x﹣12有最小值为﹣16.
    试确定:多项式﹣x2+2x+16有最    值(填大或小)为    .
    (3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.
    23.如图,在菱形ABCD中,对角线AC,BD相交于点O.过点A作AE∥BD,过点D作DE∥AC交AE于点E.
    (1)求证四边形AODE是矩形;
    (2)若AB=6,∠ABC=60°,求四边形AODE的面积.

    24.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且CE=CF.
    (1)求证:BE=DF;
    (2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?

    25.某一皮衣专卖店销售某款皮衣,其进价为每件750元,经市场调查发现,按每件1100元出售,平均每天可售出30件,每件降价50元,平均每天的销售量可增加10件,皮衣专卖店若想要平均每天获利12000元,则每件皮衣定价为多少元?
    (1)以下是小明和小红的两种不同设法,请帮忙填完整:
    小明:设每件皮衣降价x元,由题意,可列方程:   .
    小红:设每件皮衣定价为y元,由题意,可列方程:   .
    (2)请写出一种完整的解答过程.
    26.如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y轴的垂线,垂足为C点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当E点运动到点A时,三点随之停止运动.设运动时间为t.
    (1)用含t的代数式分别表示点E,点F的坐标.
    (2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值.


    参考答案
    一.选择题(共10小题,满分30分)
    1.解:A、∵=,∴=,故选项正确;
    B、当a+b=c+d=0时,等式不成立,故选项错误;
    C、当b+d=0时,等式不成立,故选项错误;
    D、无法得到=,故选项错误.
    故选:A.
    2.解:A、∵矩形的对角线相等,
    ∴选项A不符合题意;
    B、∵对角线互相垂直平分的四边形是菱形,
    ∴选项B符合题意;
    C、∵菱形的四条边相等,
    ∴选项C不符合题意;
    D、∵四个内角都相等的四边形是矩形,
    ∴选项D不符合题意;
    故选:B.
    3.解:∵四边形ABCD是正方形,
    ∴∠ADE=∠CDE=∠EBC=45°,AD=CD,∠BCD=90°,
    在△AED和△CED中,

    ∴△AED≌△CED(SAS),
    ∴∠DAE=∠ECD,
    又∵∠BEC=70°,
    ∴∠BCE=180°﹣∠BEC﹣∠EBC=180°﹣70°﹣45°=65°,
    ∵∠BCD=∠BCE+∠ECD=90°,
    ∴∠ECD=90°﹣65°=25°,
    ∴∠DAE=25°,
    故选:C.
    4.解:∵x2﹣6x﹣5=0,
    ∴x2﹣6x=5,
    则x2﹣6x+9=5+9,即(x﹣3)2=14,
    故选:D.
    5.解:设教育经费的年平均增长率为x,
    则2020的教育经费为:4000×(1+x)
    2021的教育经费为:4000×(1+x)2.
    那么可得方程:4000(1+x)2=6000.
    故选:A.
    6.解:由新定义得6x2﹣8x﹣2=0,
    ∵Δ=(﹣8)2﹣4×6×(﹣2)=112>0,
    ∴方程有两个不相等的实数根.
    故选:B.
    7.解:∵l1∥l2∥l3,
    ∴,
    ∵DE=3,DF=8,
    ∴,
    即=,
    故选:B.
    8.解:∵∠A=∠A,∠C=∠AED,
    ∴△ABC∽△ADE,故A选项不符合题意;
    ∵∠A=∠A,∠B=∠ADE,
    ∴△ABC∽△ADE,故B选项不符合题意;
    ∵AE•AB=AD•AC,
    ∴,
    ∵∠A=∠A,
    ∴△ABC∽△ADE,故C选项不符合题意;
    ∵AE•AC=AD•AB,
    ∴,
    ∵∠A=∠A,
    ∴△ADE∽△ACB,故D选项符合题意;
    故选:D.
    9.解:如图所示:当DF∥BC时,则△AFD∽△ABC,

    当∠ADE=∠B时,则△ADE∽△ABC,
    当DN∥AB时,则△CDN∽△CAB,
    当∠CDM=∠B时,则△CDM∽△CBA.
    这样的直线可以画4条.
    故选:D.
    10.解:设矩形的面积为S,作EM⊥CD,AN⊥BC,
    ∵,,
    ∵四边形为矩形,
    ∴AN=CD,EM=BC,
    ∴,
    ∴S+96=S△CDE+S△ABC+12+32+S阴影,
    ∴S阴影=S﹣S△CDE﹣S△ABC﹣12﹣32+96,
    ∴,
    ∴S阴影=96﹣32﹣12=52,
    故选:B.
    二.填空题(共10小题,满分30分)
    11.解:①∵AB=AD,AC⊥BD,
    ∴OB=OD,
    ∵AD∥BC,
    ∴∠ADO=∠CBO,
    又∵∠AOD=∠COB,
    ∴△AOD≌△COB(ASA),
    ∴AD=CB,
    ∴四边形ABCD是平行四边形,
    又∵AB=AD,
    ∴平行四边形ABCD是菱形,故①能判定四边形ABCD是菱形;
    ②∵AB=AD,AC⊥BD,
    ∴OB=OD,
    ∵OA=OC,
    ∴四边形ABCD是平行四边形,
    又∵AB=AD,
    ∴平行四边形ABCD是菱形,故②能判定四边形ABCD是菱形;
    ③∵AD∥BC,
    ∴∠DAC=∠BCA,
    ∵AC平分∠BCD,
    ∴∠DCA=∠BCA,
    ∴∠DAC=∠DCA,
    ∴AD=CD,
    ∴AB=AD=CD,不能判定四边形ABCD是菱形;
    ④∵AD∥BC,
    ∴∠BAD+∠ABC=180°,
    ∵∠ABC=∠ADC,
    ∴∠BAD+∠ADC=180°,
    ∴AB∥CD,
    ∴四边形ABCD是平行四边形,
    又∵AB=AD,
    ∴平行四边形ABCD是菱形,故④能判定四边形ABCD是菱形;
    故答案为:①②④.
    12.解:过点C作CM⊥BE交BE于M,如图,

    ∵EC平分∠BED,
    ∴∠CEM=∠CED,
    在△EMC和△EDC中

    ∴△EMC≌△EDC(AAS),
    ∴∠DCE=∠MCE,MC=DC=1,
    在Rt△BMC中,BM==1=MC,
    ∴△BMC为等腰直角三角形,
    ∴∠MCB=45°,
    ∴∠MCD=45°
    ∴∠ECD=∠MCE=22.5°.
    故答案为:22.5.
    13.解:∵关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,
    ∴k≠0且Δ>0,即22﹣4×k×(﹣1)>0,
    解得k>﹣1,
    ∴k的取值范围为k>﹣1且k≠0.
    故答案为:k>﹣1且k≠0
    14.解:∵x1,x2是方程x2﹣4x﹣2021=0的两个实数根,
    ∴x1+x2=4,x12﹣4x1﹣2021=0,即x12﹣4x1=2021,
    则原式=x12﹣4x1+2x1+2x2
    =x12﹣4x1+2(x1+x2)
    =2021+2×4
    =2021+8
    =2029.
    故答案为:2029.
    15.解:解方程x2﹣6x+5=0得:
    x1=1,x2=5,
    ∵1<第三边的边长<7,
    ∴第三边的边长为5.
    ∴这个三角形的周长是3+4+5=12.
    故答案为:12.
    16.解:设增长率为x,
    根据题意得:6400(1+x)2=8100,
    解得:x1==12.5%,x2=﹣(舍去),
    则增长率为12.5%.
    故答案为:12.5%.
    17.解:列表如下:

    O
    O
    A
    O
    (O,O)
    (O,O)
    (O,A)
    O
    (O,O)
    (O,O)
    (O,A)
    A
    (A,O)
    (A,O)
    (A,A)
    共有9种等可能的情况,两次献血的人血型均为O型的有4种情况,
    ∴两次献血的人血型均为O型的概率为,
    故答案为:.
    18.解:如图,连接DH,HM.
    由题可得,AM=BE,
    ∴AB=EM=AD,
    ∵四边形ABCD是正方形,EH⊥AC,
    ∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,
    ∴EH=AH,
    ∴△MEH≌△DAH(SAS),
    ∴∠MHE=∠DHA,MH=DH,
    ∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,
    ∴DM=HM,故②正确;
    当∠DHC=60°时,∠ADH=60°﹣45°=15°,
    ∴∠ADM=45°﹣15°=30°,
    ∴Rt△ADM中,DM=2AM,
    即DM=2BE,故③正确;
    ∵CD∥EM,EC∥DM,
    ∴四边形CEMD是平行四边形,
    ∵DM>AD,AD=CD,
    ∴DM>CD,
    ∴四边形CEMD不可能是菱形,故①错误,
    ∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,
    ∴∠AHM<∠BAC=45°,
    ∴∠CHM>135°,故④正确;
    由上可得正确结论的序号为②③④.
    故答案为:②③④.

    19.解:设这些型号的复印纸的长、宽分别为b、a,
    ∵得到的矩形都和原来的矩形相似,
    ∴=,则b2=2a2,
    ∴=,
    故答案为:.
    20.解:设DP=x,则BP=BD﹣x=14﹣x,
    ∵AB⊥BD于B,CD⊥BD于D,
    ∴∠B=∠D=90°,
    ∴当时,△ABP∽△CDP,即;
    解得x=,
    BP=14﹣=8.4;
    当时,△ABP∽△PDC,即;
    整理得x2﹣14x+24=0,
    解得x1=2,x2=12,
    BP=14﹣2=12,BP=14﹣12=2,
    ∴当BP为8.4或2或12时,以C、D、P为顶点的三角形与以P、B、A为顶点的三角形相似.
    故答案为:8.4或2或12.
    三.解答题(共6小题,满分60分)
    21.解:(1)∵关于x的一元二次方程x2﹣2kx+k2+k=0有实数根,
    ∴Δ=(﹣2k)2﹣4×1×(k2+k)≥0,
    解得k≤0;
    (2)根据题意,得:x1+x2=2k,x1x2=k2+k,
    ∵x12+x22+3x1x2=6,
    ∴(x1+x2)2+x1x2=6,
    ∴(2k2)+(k2+k)=6,
    解得k=或k=,
    ∵k≤0,
    ∴k=.
    22.解:(1)x2﹣6x+5=x2﹣6x+9﹣9+5
    =(x﹣3)2﹣4
    =(x﹣3+2)(x﹣3﹣2)
    =(x﹣1)(x﹣5).
    (2)﹣x2+2x+16=﹣(x2﹣2x)+16
    =﹣(x2﹣2x+1﹣1)+16
    =﹣(x﹣1)2+1+16
    =﹣(x﹣1)2+17,
    ∵﹣(x﹣1)2≤0,
    ∴﹣(x﹣1)2+17≤17,
    ∴多项式﹣x2+2x+16有最大值为17.
    故答案为:大;17.
    (3)x2﹣4x+5>﹣x2+4x﹣4.
    理由:(x2﹣4x+5)﹣(﹣x2+4x﹣4)
    =x2﹣4x+5+x2﹣4x+4
    =2x2﹣8x+9
    =2(x2﹣4x+4)﹣8+9
    =2(x﹣2)2+1≥1>0,
    ∴x2﹣4x+5>﹣x2+4x﹣4.
    23.(1)证明:∵AE∥BD,DE∥AC,
    ∴四边形AODE是平行四边形,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,
    ∴∠AOD=90°,
    ∴平行四边形AODE为矩形;
    (2)解:∵四边形ABCD是菱形,
    ∴OA=OC,OB=OD,AC⊥BD,AB=BC,
    ∵∠ABC=60°,
    ∴△ABC是等边三角形,
    ∴AC=AB=6,
    ∴OA=AC=3,
    ∴OD=OB===3,
    由(1)可知,四边形AODE是矩形,
    ∴矩形AODE的面积=OA×OD=3×3=9.
    24.(1)证明:∵四边形ABCD是正方形,
    ∴BC=DC,∠B=∠CDA=90°,
    ∵F是AD延长线上一点,
    ∴∠CDF=180˚﹣∠CDA=90°,
    在Rt△CBE和Rt△CDF中,

    ∴Rt△CBE≌Rt△CDF(HL),
    ∴BE=DF;
    (2)GE=BE+GD成立,
    理由:∵△CBE≌△CDF,
    ∴∠BCE=∠DCF,
    又∵∠BCD=∠BCE+∠DCE=90°,
    ∴∠ECF=∠DCF+∠DCE=90°,
    ∵∠GCE=45°,
    ∴∠GCF=∠ECF﹣∠GCE=45°,
    在△ECG和△FCG中,

    ∴△ECG≌△FCG(SAS),
    ∴GE=GF,
    ∵GF=DF+DG,BE=DF
    ∴GF=BE+DG,
    ∴GE=BE+GD成立.

    25.解:(1)小明:设每件皮衣降价x元,则平均每天的销售量为(30+x÷50×10)件,
    依题意,得:(1100﹣x﹣750)(30+x÷50×10)=12000;
    小红:设每件皮衣定价为y元,则平均每天的销售量为(30+×10)件,
    依题意,得:(y﹣750)(30+)=12000.
    故答案为:(1100﹣x﹣750)(30+x÷50×10)=12000;(y﹣750)(30+)=12000.
    (2)选择小明的的设法,则(1100﹣x﹣750)(30+x÷50×10)=12000,
    整理,得:x2﹣200x+7500=0,
    解得:x1=50,x2=150,
    ∴1100﹣x=1050或950.
    答:每件皮衣定价为1050元或950元.
    选择小红的设法,则(y﹣750)(30+)=12000,
    整理,得:y2﹣2000y+997500=0,
    解得:y1=1050,y2=950.
    答:每件皮衣定价为1050元或950元.
    26.解:(1)由题可得OE=3t,OD=t,BF=2t.
    ∵BA⊥x轴,BC⊥y轴,∠AOC=90°,
    ∴∠AOC=∠BAO=∠BCO=90°,
    ∴四边形OABC是矩形,
    ∴AB=OC,BC=OA.
    ∵B(12,10),
    ∴BC=OA=12,AB=OC=10,
    ∴AF=10﹣2t,AE=12﹣3t,
    ∴点E的坐标为(3t,0),点F的坐标为(12,10﹣2t);
    (2)①当△ODE∽△AEF时,
    则有=,
    ∴=,
    解得t1=0(舍),t2=;
    ②当△ODE∽△AFE时,
    则有=,
    ∴=,
    解得t1=0(舍),t2=6.
    ∵点E运动到点A时,三点随之停止运动,
    ∴3t≤12,
    ∴t≤4.
    ∵6>4,
    ∴t=6舍去,
    综上所述:t的值为.



    相关试卷

    2021-2022学年人教版九年级数学上学期期末综合复习模拟测试题2(word版 含答案): 这是一份2021-2022学年人教版九年级数学上学期期末综合复习模拟测试题2(word版 含答案),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2021-2022学年人教版九年级数学上学期期末综合复习模拟测试题1 (word版 含答案): 这是一份2021-2022学年人教版九年级数学上学期期末综合复习模拟测试题1 (word版 含答案),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2021-2022学年苏科版八年级数学上学期期中综合复习模拟测试题1 (word版含答案): 这是一份2021-2022学年苏科版八年级数学上学期期中综合复习模拟测试题1 (word版含答案),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map