专题11概率(理)知识点与大题16道专练(中档题)(原卷版)-备战2022年高考数学大题分类提升专题学案
展开
这是一份专题11概率(理)知识点与大题16道专练(中档题)(原卷版)-备战2022年高考数学大题分类提升专题学案,共17页。
专题11概率(理)知识点与大题16道专练(中档题)(原卷版)
知识点一:常见的概率类型与概率计算公式;
类型一:古典概型;
1、 古典概型的基本特点:
(1) 基本事件数有限多个;
(2) 每个基本事件之间互斥且等可能;
2、 概率计算公式:
A事件发生的概率;
类型二:几何概型;
1、 几何概型的基本特点:
(1) 基本事件数有无限多个;
(2) 每个基本事件之间互斥且等可能;
2、 概率计算公式:
A事件发生的概率;
注意:
(1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比;
(2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪一个是等可能的;
例如:等腰中,角C=,则:
(1) 若点M是线段AB上一点,求使得的概率;
(2) 若射线CA绕着点C向射线CB旋转,且射线CA与线段AB始终相交且交点是M,求使得的概率;
解析:第一问中明确M为AB上动点,即点M是在AB上均匀分布,所以这一问应该是长度之比,所求概率:;
而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:;
知识点二:常见的概率计算性质;
类型一:事件间的关系与运算;
A+B(和事件):表示A、B两个事件至少有一个发生;
(积事件):表示A、B两个事件同时发生;
(对立事件):表示事件A的对立事件;
类型二:复杂事件的概率计算公式;
1、 和事件的概率:
(1)特别的,若A与B为互斥事件,则:
(2)对立事件的概率公式:
2、 积事件的概率:
(1)若事件相互独立,则:
(2)n次独立重复的贝努利实验中,某事件A在每一次实验中发生的概率都为p,则在n次试验中事件A发生k次的概率:
类型三:条件概率;
1、 条件概率的定义:我们把在事件A发生的条件下事件B发生的概率记为:;
且
2、 三个常见公式:
(1) 乘法公式:
(2) 全概率公式:设是一组互斥的事件且,则对于任何一个事件B都有:
(3) 贝叶斯公式:设是一组互斥的事件且
则对于任何一个事件B都有:
知识点三:求解一般概率问题的步骤;
第一步:确定事件的性质:等可能事件、互斥事件、相互独立事件、n次独立重复实验等;
第二步:确定事件的运算:和事件、积事件、条件概率等;
第三步:运用相应公式,算出结果;
知识点三:常见的统计学数字特征量及其计算;
特征量一:平均数(数学期望)
计算公式一:;
计算公式二:;
计算公式三:(若随机变量是连续型随机变量,且函数是它的密度函数)
特征量二:中位数
将所有的数从大到小排或者从小到大排,若共有奇数个数,则正中间的那个数叫做这一列数的中位数;若共有偶数个数,那么正中间那两个数的平均数叫做这一列数的中位数。
特征量三:众数
将所有数中出现次数最多且次数超过1次的数叫做这一列数的众数。一列数的众数可以有多个,也可以没有。
特征量四:方差
方差反映一组数或者一个统计变量的稳定程度,方差越小数值越稳定,方差越大则数值波动越大。
计算公式一:;
计算公式二:;
计算公式三:;
注:期望和方差的性质:
性质1:;
性质2:;
性质6:;
性质7:;
;
性质9:若是相互独立的随机变量,则:
;
知识点四:简单的统计学知识;
问题一:统计学中的简单的抽样方法;
方法一:简单随机抽样;
1、 基本原理:根据研究目的选定总体,首先对总体中所有的观察单位编号,遵循随机原则,采用不放回抽取方法,从总体中随机抽取一定数量观察单位组成样本。
2、 具体做法:①随机数字法 ; ② 抽签法;
3、 优缺点分析:
优点:基本原理比较简单;
当总体容量不大时比较方便;
抽样误差的计算较方便;
缺点:对所有观察单位编号,当数量大时,有难度;
方法二:系统抽样;
1、 基本原理:先将总体的观察单位按某顺序号等分成n个部分再从第一部分随机抽第k号观察单位,依次用相等间隔,机械地从每一部分各抽取一个观察单位组成样本;
2、 优缺点分析:
优点:抽样方法简便,特别是容量比较大的时候;
易得到一个按比例分配的样本,抽样误差较小;
缺点:仍需对每个观察单位编号;
当观察单位按顺序有周期趋势或单调性趋势时,产生明显偏性;
方法三:分层抽样;
1、 基本原理:先将总体按某种特征分成若干层,再从每一层内随机抽取一定数量的观察单位,合起来组成样本。
2、 具体做法:
第一步:计算每一层个体数与总体容量的比值;
第二步:用样本容量分别乘以每一层的比值,得出每层应抽取的个体数;
第三步:用简单随机抽样的方法产生样本;
3、 优缺点分析:
优点:在一定程度上控制了抽样误差,尤其是最优分配法;
缺点:总体必须要能分成差别比较大的几层时才能用,局限性比较大;
总结:以上三种抽样方法的共同特征是每个个体被抽中的可能性相同;
知识点五:常用的几个统计学图表;
图表一:频率分布直方图与频率分布折线图;
1、 说明几个基本概念:
(1) 频数:符合某一条件的个体个数;
(2) 频率:频率=;(在必要情况下,可以近视的看作概率;所有组的频率之和是1;)
2、 认识频率分布直方图:
(1) 横标是分组的情况;
(2) 纵标不是频率,而是频率/组距;小方框的面积才是频率;所有的面积和为1;
3、 画频率分布直方图:
第一步:求极差;
第二步:分组,确定组距;
第三步:列频率分布表;
第四步:作图;
4、 画频率分布折线图:
将频率分布直方图中每个方框的顶边的中点用直线连起来形成的折线图;
5、 利用频率分布直方图估计样本的统计学数字特征量:
(1) 中位数:取图中方框面积和达到时的横坐标;
(2) 众数:取最高的那个方框的中点横坐标;
(3) 平均数:;其中表示第k组的中点横坐标,表示第k组的频率;
(4) 方差:;
图表二:茎叶图;
定义:若数据为整数,一般用中间的数表示个位数以上的部分,两边的数表示个位数字;若数据是小数,一般用中间的数表示整数部分,两边的数表示小数部分形成的图表;
知识点六:变量间的相互关系与统计案例;
1、相关关系的分类:
从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关。
2、线性相关:
从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线。
3.最小二乘法求回归方程:
(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫最小二乘法.
(2)回归方程:两个具有线性相关关系的变量的一组数据:
(x1,y1),(x2,y2),…,(xn,yn),其回归方程为=x+,
其中,b是回归方程的斜率,a是在y轴上的截距.
4.样本相关系数:
r= ,用它来衡量两个变量间的线性相关关系.
(1)当r>0时,表明两个变量正相关;
(2)当r<0时,表明两个变量负相关;
(3)r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|>0.75时,认为两个变量有很强的线性相关关系.
6.独立性检验:
(1)用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例如:是否吸烟,宗教信仰,国籍等.
(2)列出的两个分类变量的频数表,称为列联表.
(3)一般地,假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
y1
y2
总计
x1
a
b
a+b
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
(其中n=a+b+c+d为样本容量),可利用独立性检验判断表来判断“x与y的关系”.这种利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.
附表:
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
注意:
(1)越大相关性越强,反之越弱;
(2)附表中P(K2≥k)是两个统计学变量无关的概率;
知识点七:常见的概率分布及期望、方差;
类型一:离散型随机变量的概率分布;
1、 两点分布(贝努利分布或0、1分布):
(1) 特点:随机变量x只能取两个值0、1;分布列如下:
0
1
(2) 期望:;
方差:;
2、 二项分布:
(1) 特点:在n次独立重复的贝努利实验中,每次实验中A事件发生的概率都是p;每次试验只有两个结果A或;随机变量表示n次试验中A事件发生的次数;
即:;则称随机变量服从二项分布;记为:
;
(2) 期望:;(有两种不同的证明方法,这里就省略了。)
方差:;
3、 几何分布:
(1) 特点:在独立重复的贝努利实验中,每次实验中A事件发生的概率都是p,不发生的概率为();随机变量表示A事件首次出现时试验的次数;则称随机变量服从几何分布,记为:;
(2) 期望:;(,期望公式可以利用等比数列求和和极限的思想证明。)
方差:;
4、 超几何分布:
(1) 特点:一般的共有N个个体,A类个体有M个,从中任取n个,随机变量表示取到的A类个体的个数,则称服从超几何分布,记为:;
;
(2) 期望:;
方差:;
类型二:连续型随机变量的概率分布;(高中阶段我们只研究正态分布)
正态分布:
1、 密度函数的概念:在频率分布折线图中,当样本容量取得足够大,组距取得足够小的时候频率分布折线图会变成一条光滑的曲线,我们就把这样的曲线叫做连续性随机变量的密度曲线;把他的解析式叫做密度函数;
显然,如果连续型随机变量的密度函数是,则:
;;
;;
2、正态分布的定义:如果连续型随机变量的密度函数是:;则称随机变量服从正态分布,记为:;
3、正态分布曲线的特点:
(1)整条曲线都在轴的上方,即对恒成立;
(2)是他的对称轴,当时,函数单调递增;当时,函数单调递减;在时取得最大值;
(3)正态分布曲线的两个主要参数的几何学意义:
参数决定对称轴的位置,也决定整条曲线的位置,所以也称为位置参数;参数 决定数据的离散程度,也就决定了曲线的高矮胖瘦;具体规律是:越大,数据越离散,曲线越矮越胖;越小,数据越集中,曲线越高越瘦;于是我们习惯于把参数称为形状参数;
4、 正态分布的期望与方差:若
期望:; 方差:;
5、 正态分布的原则:
(1);
(2);
(3);
6、标准正态分布:若,则称随机变量服从标准正态分布;
7、正态分布与标准正态分布之间的转化关系:
若,则;
1.近年来,以习近平同志为核心的党中央把生态保护放在优先位置,创新生态扶贫机制,坚持因地制宜、绿色发展,在贫困地区探索出一条脱贫攻坚与生态文明建设“双赢”的新路.下图是某社区关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200人,这200人的年龄区间为并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)求出a的值;
(2)求这200人年龄的样本平均数(精确到小数点后一位);
(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行问卷调查,求从第2组恰好抽到2人的概率.
2.为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图如下.
(1)求值;
(2)估计该地学生跳绳次数的中位数和平均数.
3.一台机器由于使用时间较长,生产的零件有一些会有缺损、按不同转速生产出来的零件有缺损的统计数据如下:
转速(转/)
每小时生产有缺损零件数(件)
(1)在下图作出散点图;
(2)如果与线性相关,求线性回归方程;
(3)如果实际生产中,允许每小时的产品中有缺损的零件最多为个,那么机器运转速度应控制在什么范围内?
参考数据:,,,回归方程中斜率和截距的最小二乘估计公式分别为,.
4.已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩统计,先将800人按001,002,003,…,800进行编号.
(1)如果从随机数表的第8行第7列的数开始向右读,请你依次写出最先抽取到的3个人的编号.
(2)所抽取的100人的数学与地理的水平测试成绩如下表:
人数
数学
优秀
良好
及格
地理
优秀
7
20
5
良好
9
18
6
及格
a
4
b
成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如表中数学成绩为良好的人数为20+18+4=42.若在该样本中,数学成绩优秀率为30%,求,的值.
(3)若,,求“在地理成绩为及格的学生中,数学成绩为优秀的人数比及格的人数少”的概率.
附:(下面摘取了随机数表的第7行至第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67
21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75
12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38
15 51 00 13 42 99 66 02 79 54
5.年国办发号文件的公布让多年来一直期待涨工资的机关事业单位人员兴奋不已.某事业单位随机从甲部门抽取人(男女),从乙部门抽取人(男女),然后从这人中随机抽取人代表单位去参加市里的相关会议.
(1)求这人全部来自甲部门的概率;
(2)求这人中至少有人是男生的概率.
6.某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)根据茎叶图计算样本数据的平均数;
(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;
(3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.
7.甲、乙二人独立破译同一密码,甲破译密码的概率为0.7,乙破译密码的概率为0.6.记事件A:甲破译密码,事件B:乙破译密码.
(1)求甲、乙二人都破译密码的概率;
(2)求恰有一人破译密码的概率.
8.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据.
3
4
5
6
7
3
3
4
5
5
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技改前,100吨甲产品的生产能耗为70吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?
参考公式,
9.中国提出共建“一带一路”,旨在促进更多的经济增长和更大的互联互通,随着“一带一路”的发展,中亚面粉、波兰苹果、法国红酒走上了国人的餐桌,中国制造的汽车、电子元件、农产品丰富着海外市场.为拓展海外市场,某电子公司新开发一款电子产品,该电子产品的一个系统有3个电子元件组成,各个电子元件能正常工作的概率为,且每个电子元件能否正常工作相互独立,若系统中有超过一半的电子元件正常工作,则可以正常工作,否则就需要维修,且维修所需费用为900元.
(1)求系统需要维修的概率;
(2)该电子产品共由3个系统组成,设为电子产品所需要维修的费用,求的期望;
(3)为提高系统正常工作的概率,在系统内增加两个功能完全一样的其他品牌的电子元件,每个新元件正常工作的概率为,且新增元件后有超过一半的电子元件正常工作,则可以正常工作.问:满足什么条件时可以提高整个系统的正常工作概率?
10.2020年新冠疫情以来,医用口罩成为防疫的必需品.根据国家质量监督检验标准,过滤率是生产医用口罩的重要参考标准,对于直径小于5微米的颗粒的过滤率必须大于90%.为了监控某条医用口罩生产线的生产过程,检验员每天从该生产线上随机抽取10个医用口置,检测其过滤率,依据长期生产经验,可以认为这条生产线正常状态下生产的医用口罩的过滤率服从正态分布.假设生产状态正常,生产出的每个口罩彼此独立.记表示一天内抽取10个口罩中过滤率小于或等于的数量.
(1)求的概率;
(2)求的数学期望;
(3)一天内抽检的口罩中,如果出现了过滤率小于的口罩,就认为这条生产线在这一天的生产过程中可能出现了异常情况,需要对当天的生产过程进行检查维修,试问这种监控生产过程的方法合理吗?
附:若随机变量,则,,,.
11. 为了解中学生是否近视与性别的相关性,某研究机构分别调查了甲、乙、丙三个地区的100名中学生是否近视的情况,得到三个列联表如表所示.
甲地区 乙地区 丙地区
近视
不近视
合计
近视
不近视
合计
近视
不近视
合计
男
21
29
50
男
25
25
50
男
23
27
50
女
19
31
50
女
15
35
50
女
17
33
50
合计
40
60
100
合计
40
60
100
合计
40
60
100
(1)分别估计甲、乙两地区的中学男生中男生近视的概率;
(2)根据列联表的数据,在这三个地区中,中学生是否近视与性别关联性最强与最弱的地区分别是哪个地区?
附:,其中.
12.防洪工程对防洪减灾起着重要作用,水库是我国广泛采用的防洪工程之一,既有滞洪作用又有蓄洪作用.北京地区2010年至2019年每年汛末(10月1日)水库的蓄水量数据如下:
年份
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
蓄水量(亿立方米)
11.25
13.25
13.58
17.4
12.4
12.1
18.3
26.5
34.3
34.1
(Ⅰ)从2010年至2019年的样本数据中随机选取连续两年的数据,求这两年蓄水量数据之差的绝对值小于1亿立方米的概率;
(Ⅱ)从2014年至2019年的样本数据中随机选取两年的数据,设为蓄水量超过33亿立方米的年份个数,求随机变量的分布列和数学期望;
(Ⅲ)由表中数据判断从哪年开始连续三年的水库蓄水量方差最大?(结论不要求证明)
13.某班级60名学生的考试分数x分布在区间内.设考试分数x的频率分布为,且满足,考试成绩采用“6分制”,规定:考试分数在区间,,,,,内的成绩依次记为1分,2分,3分,4分,5分,6分.在60名学生中用分层抽样的方法从成绩为1,2,3分的学生中随机抽取6人,再在这6人中随机抽查3人,记这3人成绩之和为.
(1)求t的值;
(2)求的分布列及数学期望.
14.自从新型冠状病毒爆发以来,美国疫情持续升级,以下是美国2020年4月9日-12月14日每隔25天统计1次共11次累计确诊人数(万).
日期(月/日)
4/09
5/04
5/29
6/23
7/18
8/13
统计时间顺序
1
2
3
4
5
6
累计确诊人数
43.3
118.8
179.4
238.8
377.0
536.0
日期(月/日)
9/06
10/01
10/26
11/19
11/14
统计时间顺序
7
8
9
10
11
累计确诊人数
646.0
744.7
888.9
1187.4
1673.7
(1)将4月9日作为第1次统计,若将统计时间顺序作为变量,每次累计确诊人数作为变量,得到函数关系﹒对上表的数据作初步处理,得到部分数据已作近似处理的一些统计量的值,,,,,,,.根据相关数据,确定该函数关系式(函数的参数精确到).
(2)经过医学研究,发现新型冠状病毒极易传染,一个病毒的携带者在病情发作之前通常有长达14天的潜伏期,这个期间如果不采取防护措施,则感染者与一位健康者接触时间超过15秒,就有可能传染病毒.如果一位新型冠状病毒的感染者传染给他人的概率为0.3,在一次36人的家庭聚餐中,只有一位感染者参加了聚餐,记余下的人员中被感染的人数为,求最有可能(即概率最大)的值是多少.
15.某班有名班干部,其中男生人,女生人,任选人参加学校的义务劳动.
(1)求男生甲或女生乙被选中的概率;
(2)设“男生甲被选中”为事件,“女生乙被选中”为事件,求和.
16.巴西世界杯足球赛正在如火如荼进行.某人为了了解我校学生“通过电视收看世界杯”是否与性别有关,从全校学生中随机抽取名学生进行了问卷调查,得到了如下列联表:
男生
女生
合计
收看
不收看
合计
已知在这名同学中随机抽取人,抽到“通过电视收看世界杯”的学生的概率是.
(1)请将上面的列联表补充完整,并据此资料分析“通过电视收看世界杯”与性别是否有关?
(2)若从这名同学中的男同学中随机抽取人参加一活动,记“通过电视收看世界杯”人数为,求的分布列和均值.
附:参考公式:,.
相关学案
这是一份专题20概率(理)知识点与大题16道专练(中档题)(解析版)-备战2022年高考数学大题分类提升专题学案,共22页。学案主要包含了椭圆,双曲线,抛物线,直线与圆锥曲线的位置关系,弦长问题等内容,欢迎下载使用。
这是一份专题10概率(理)知识点与大题16道专练(基础题)(解析版)-备战2022年高考数学大题分类提升专题学案,共26页。
这是一份专题8概率(文)知识点与大题16道专练(中档题)(原卷版)-备战2022年高考数学大题分类提升专题学案,共14页。