人教版数学九年级上册月考模拟试卷13(含答案)
展开人教版数学九年级上册月考模拟试卷
一、选择题
1.方程x2=﹣x的解是( )
A.x=1 B.x=0 C.x1=﹣1或x2=0 D.x1=1或x2=0
2.下列图形中,是中心对称图形的是( )
A. B. C. D.
3.将抛物线y=x2﹣6x+1向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )
A.y=(x﹣4)2﹣6 B.y=(x﹣4)2﹣2
C.y=(x﹣2)2﹣2 D.y=(x﹣1)2﹣3
4.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是( )
A.m≤ B.m≤且m≠0 C.m<1 D.m<1且m≠0
5.下列命题中假命题的个数是( )
①三点确定一个圆;
②三角形的内心到三边的距离相等;
③相等的圆周角所对的弧相等;
④平分弦的直径垂直于弦;
⑤垂直于半径的直线是圆的切线.
A.4 B.3 C.2 D.1
6.如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为( )
[来源:Z#xx#k.Com]
A.(,1) B.(,﹣1) C.(1,﹣) D.(2,﹣1)
7.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为( )
A.2 B.4 C.6 D.8
8.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为( )
A.45° B.30° C.75° D.60°
9.已知抛物线y=ax2+bx+c(a<0)过A(2,0)、O(0,0)、B(﹣3,y1)、C(3,y2)四点,则y1与y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:
①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
二、填空题
11.抛物线y=2(x﹣4)2+1的顶点坐标为 .
12.关于x的一元二次方程(a﹣1)x2+x+a2+3a﹣4=0有一个实数根是x=0,则a的值为 .
13.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元.如果平均每月增长率为x,则由题意列方程应为 .
14.⊙O的半径r=5cm,圆心到直线l的距离OM=4cm,在直线l上有一点P,且PM=4cm,则点P与⊙O的位置关系是:点P在⊙O .
15.若一个圆锥的底面圆半径为3cm,其侧面展开图的圆心角为120°,则圆锥的母线长是
cm.
16.如图,直线l:y=﹣x,点A1坐标为(﹣3,0).过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2017的坐标为 .
三、解答题
17.解下列方程.
(1)(x﹣2)2+2x(x﹣2)=0 (2)2x2﹣1=3x.
18.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转到△ABF的位置.
(1)旋转中心是点 ,旋转角度是 度;
(2)若四边形AECF的面积为16,DE=3,求EF的长.
19.已知关于x的方程x2+mx+n+3=0的一根为2
(1)求n关于m的关系式
(2)求证:抛物线y=x2+mx+n与x轴有两个交点.
20.如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.
(1)求证:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.
21.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.
22.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
23.如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.[来源:学科网ZXXK]
(1)求证:CG是⊙O的切线.
(2)求证:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的长.
24.如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
参考答案
1.C.
2.C.
3.A.
4.B.
5.A.
6.B.
7.D.
8.D.
9.C.
10.C.
11.(4,1).
12.﹣4.
13.200[1+(1+x)+(1+x)2]=1000.
14.外.
15.9.
16.(,0).
17.解:(1)(x﹣2)(x﹣2+2x)=0,
x﹣2=0或x﹣2+2x=0,
所以x1=2,x2=;
(2)2x2﹣3x﹣1=0,
△=(﹣3)2﹣4×2×(﹣1)=17,
x=,
所以x1=,x2=.
18.解:(1)∵把△ADE顺时针旋转到△ABF的位置是绕点A顺时针旋转,
∴旋转中心是点A,
∵四边形ABCD是正方形,[来源:学.科.网]
∴∠DAB=90°
∴旋转角度是90度.
故答案为:A;90;
(2)由旋转变换的性质可知:△ADE≌△ABF,
∴S四边形AECF=S正方形ABCD=16,BF=DE=3,
∴AD=DC=BC=4,FC=FB+BC=7,
∴EC=DC﹣DE=1,
∴EF==5.
19.解:(1)将x=2代入方程,得:4+2m+n+3=0,
整理可得n=﹣2m﹣7;
(2)∵△=m2﹣4(n+3)
=m2﹣4(﹣2m﹣7)
=m2+8m+28
=(m+4)2+12>0,
∴一元二次方程x2+mx+n=0有两个不相等的实根,
∴抛物线y=x2+mx+n与x轴有两个交点.
20.(1)证明:∵AD平分∠BAC,BE平分∠ABC,
∴∠ABE=∠CBE,∠BAE=∠CAD,
∴,
∴∠DBC=∠CAD,
∴∠DBC=∠BAE,
∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,
∴∠DBE=∠DEB,
∴DE=DB;
(2)解:连接CD,如图所示:
由(1)得:,
∴CD=BD=4,
∵∠BAC=90°,
∴BC是直径,
∴∠BDC=90°,
∴BC==4,
∴△ABC外接圆的半径=×4=2.
21.解:(1)根据题意得(2m+3)2﹣4(m2+2)≥0,
解得m≥﹣;
(2)根据题意x1+x2=2m+3,x1x2=m2+2,
因为x1x2=m2+2>0,
所以x12+x22=31+x1x2,
即(x1+x2)2﹣3x1x2﹣31=0,
所以(2m+3)2﹣3(m2+2)﹣31=0,
整理得m2+12m﹣28=0,解得m1=﹣14,m2=2,
而m≥﹣;
所以m=2.
22.
【解答】解:(1)w=(x﹣30)•y
=(﹣x+60)(x﹣30)
=﹣x2+30x+60x﹣1800
=﹣x2+90x﹣1800,
w与x之间的函数解析式w=﹣x2+90x﹣1800;
(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,
∵﹣1<0,
当x=45时,w有最大值,最大值是225.
(3)当w=200时,﹣x2+90x﹣1800=200,
解得x1=40,x2=50,
∵50>42,x2=50不符合题意,舍,
答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.
23.
【解答】(1)证明:连结OC,如图,
∵C是劣弧AE的中点,
∴OC⊥AE,
∵CG∥AE,
∴CG⊥OC,
∴CG是⊙O的切线;
(2)证明:连结AC、BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠2+∠BCD=90°,
而CD⊥AB,
∴∠B+∠BCD=90°,[来源:学,科,网Z,X,X,K]
∴∠B=∠2,
∵C是劣弧AE的中点,
∴=,
∴∠1=∠B,
∴∠1=∠2,
∴AF=CF;
(3)解:在Rt△ADF中,∠DAF=30°,FA=FC=2,
∴DF=AF=1,
∴AD=DF=,
∵AF∥CG,
∴DA:AG=DF:CF,即:AG=1:2,
∴AG=2.
24.
【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),
∴OB=3,
∵OC=OB,
∴OC=3,
∴c=3,
∴,
解得:,
∴所求抛物线解析式为:y=﹣x2﹣2x+3;
(2)如图2,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),
∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,
∴S四边形BOCE=BF•EF+(OC+EF)•OF,
=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a),
=﹣﹣a+,
=﹣(a+)2+,
∴当a=﹣时,S四边形BOCE最大,且最大值为.
此时,点E坐标为(﹣,);
(3)∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣1,点P在抛物线的对称轴上,
∴设P(﹣1,m),
∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,
①当m≥0时,
∴PA=PA1,∠APA1=90°,
如图3,过A1作A1N⊥对称轴于N,设对称轴于x轴交于点M,
∴∠NPA1+∠MPA=∠NA1P+∠NPA1=90°,
∴∠NA1P=∠NPA,
在△A1NP与△PMA中,
,
∴△A1NP≌△PMA,
∴A1N=PM=m,PN=AM=2,
∴A1(m﹣1,m+2),
代入y=﹣x2﹣2x+3得:m+2=﹣(m﹣1)2﹣2(m﹣1)+3,
解得:m=1,m=﹣2(舍去),
②当m<0时,要使P2A=P2A,2,由图可知A2点与B点重合,
∵∠AP2A2=90°,∴MP2=MA=2,
∴P2(﹣1,﹣2),
∴满足条件的点P的坐标为P(﹣1,1)或(﹣1,﹣2).
苏科版数学九年级上册月考模拟试卷13(含答案): 这是一份苏科版数学九年级上册月考模拟试卷13(含答案),共15页。试卷主要包含了选择题,解答题,填空题等内容,欢迎下载使用。
人教版数学九年级上册月考模拟试卷十二(含答案): 这是一份人教版数学九年级上册月考模拟试卷十二(含答案),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版数学九年级上册月考模拟试卷09(含答案): 这是一份人教版数学九年级上册月考模拟试卷09(含答案),共13页。试卷主要包含了选择题,四象限,故A选项错误;,解答题等内容,欢迎下载使用。