|教案下载
终身会员
搜索
    上传资料 赚现金
    高中数学北师大版必修四 1.6.2余弦函数性质 教案1
    立即下载
    加入资料篮
    高中数学北师大版必修四 1.6.2余弦函数性质 教案101
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学北师大版必修46.2余弦函数的性质教案

    展开
    这是一份高中数学北师大版必修46.2余弦函数的性质教案,共3页。

    余弦函数的性质

    教学设计

    课题

    余弦函数的性质

    授课教师

     

    授课对象

     

    课型

    新授课

    教材版本

    北师大版必修4

    学科核心素养

    发展目标

    1.                                                                                                  从已知的正弦函数的图像及性质出发,启发引导学生获得研究函数性质的一般规范和模式,利用数形结合的方法获知余弦函数的性质,发展学生的数学抽象、直观想象素养.
    2.                                                                                                  利用余弦函数的图像,请同学们小组合作,观察并发现,叙述余弦函数的性质,培养学生的理性思维,学会用数学知识解决问题.发展学生的逻辑推理、数学运算素养.
    3.                                                                                                  利用五点作图法以及研究函数性质的模式,针对余弦函数的图像,发现问题、提出问题、分析问题、解决问题.

     

     

     

     

    教学任务分析

    1.小组合作,用五点法描绘余弦函数的图像

    2.通过类比推理的方法,从讨论正弦函数性质出发,获知研究函数性质的一般方法和模式,并移植到关于余弦函数性质的研究上来;

    3.利用例题(或思考题)巩固并应用学习过的余弦函数的性质;

    4.拓展研究方法,要求同学们采用单位圆的方法来研究余弦函数的性质.

     

    教学重点

    余弦函数的性质

    教学难点

    余弦函数的性质的运用.

     

    环节

    教学过程

    设计意图

    新课引入

     

     

    前面我们学习了正弦函数的图像及其性质,我们也知道了余弦函数图象的画法,今天我们主要是类比对正弦函数图像及性质的研究来探究余弦函数的性质.

         板书:余弦函数的性质

     

    从已有的结论和研究模式为基础,通过类比推理的方法来研究余弦函数的性质。培养学生类比推理的意识.

    提出问题

     

     

    首先复习一下正弦函数的图像及性质,请同学们以小组为单位,利用五点作图法来描绘正弦函数的图像,并回顾表述它的性质.课堂上提出以下问题:

    1研究函数的性质从哪几个方面入手?

    2能否用类似的方法来研究余弦函数的性质?

     

    利用类比的方法,帮助学生明确研究函数的一般方法,并获得研究余弦函数的性质的思路.

    分析问题

    解决问题

     

    类比正弦函数的图像及性质研究,通过小组合作学习,同学们总结出,研究函数一般可以考虑:定义域、值域、最值、单调性、奇偶性、周期性,有的函数可能还具有对称性等。我们就试着用类似的思路来研究余弦函数的性质。同学们通过小组合作学习得出了关于余弦函数的性质,并请一个小组派代表来给同学们分享.

    把问题作为教学的出发点,引起学生的好奇,用操作性活动激发学生求知欲,为发现新知识创设一个最佳的心理和认识环境,关注学生动手能力培养.

     

    例题讲解

    揭示过程

     

     

    学习完余弦函数的性质后,我们给了几个例题及思考交流,通过练习帮助学生巩固掌握已有的知识,并学会举一反三。

    1 画出的简图,并讨论性质.

    这个简图可以将余弦函数的图像向下平移一个单位形成,也可以利用五点作图法来完成,给同学们提供多个思路,帮助他们形成举一反三的意识。

    思考交流的题目是:根据余弦函数的图像,求满足的实数的集合.

    利用余弦函数的图像及直线之间的关系,采用数形结合的方法容易确定实数的集合.简单分析之后,请一位同学来讲解.

    2 比较的大小.

    由于 不是特殊角,要直接计算它们的函数值不容易,那么如何比较它们余弦值的大小呢?将问题给学生,引发学生思考的兴趣和动机,让他们经过小组讨论获得比较的方法:即,利用余弦函数的单调性来判断。当然,这两个角属于一个单调区间,判断起来还比较方便。之后,教师提出问题,如果比较的角不在同一个单调区间,那么它们的余弦值的大小如何比较,请同学们课后思考。

    三个例题及思考题层层递进,由易到难,既注重了对代数式的讨论,又关注了对形的思考,通过数形结合的方法,达到对问题的解决。更为重要的是,既培养了学生的直观想象素养,又培养了学生的逻辑推理及数学运算素养。

    内容小结

    归纳提升

     

    1.今天学习了什么内容?

    运用类比推理的方法,学习了余弦函数的性质.

    2.体现了哪些数学思想方法?

    1)类比推理;

    2)数形结合.

    1.                                                                                                  总结学习的知识;
    2.                                                                                                  讨论渗透的数学思想方法及其对学生学习的重要性.

     

    方法拓展

    在小结之后,要求学生利用单位圆的方法来研究余弦函数的性质,这从研究方法上进行了有效的拓展.

    拓展延伸

     

     

    板书设计

     

     

     

     

    课题

    幻灯片展示1、画余弦函数图像(五点作图)

      2、余弦函数的性质

     

     

    展现重点

     

    教学反思

     

    利用类比推理的方法,给同学们介绍余弦函数的性质,这种方法对学生来说并不陌生,而且,学生容易接受.

    课堂上学生对于现实问题以及如何用数学知识解决表现出比较浓厚的求知欲,在经历了发现问题、提出问题、分析问题、解决问题等各个环节后,学生的数学抽象、逻辑推理、数学建模、数学运算、数据分析等素养都得到了发展.也引导了学生在现实生活中,多用数学的眼光去观察、用数学的思维去思考、用数学的语言去表达.

    不足之处在于,对有些内容的拓展延伸方面稍有欠缺,所以我会在后续的课程中继续加强.

     

     

     

     

    相关教案

    高中北师大版6.2余弦函数的性质教案设计: 这是一份高中北师大版6.2余弦函数的性质教案设计,共4页。教案主要包含了教学目标,教学重,学法与教法,教学过程,教后反思等内容,欢迎下载使用。

    高中数学北师大版必修46.2余弦函数的性质教学设计: 这是一份高中数学北师大版必修46.2余弦函数的性质教学设计,共5页。教案主要包含了教学目标,教学重,学法与教法,教学过程,教后反思等内容,欢迎下载使用。

    北师大版必修46.2余弦函数的性质教案: 这是一份北师大版必修46.2余弦函数的性质教案,共4页。教案主要包含了情感态度与价值观,过程与方法,知识与技能等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map