专题10 中考折叠类题目中的动点问题(学生版) 备战2020年中考几何压轴题分类导练
展开
这是一份专题10 中考折叠类题目中的动点问题(学生版) 备战2020年中考几何压轴题分类导练,共6页。试卷主要包含了折叠问题中的类比问题,折叠问题中的落点“固定”问题等内容,欢迎下载使用。
专题10:中考折叠类题目中的动点问题折叠问题是中考的热点也是难点问题,通常与动点问题结合起来,这类问题的题设通常是将某个图形按一定的条件折叠,通过分析折叠前后图形的变换,借助轴对称性质、勾股定理、全等三角形性质、相似三角形性质、三角函数等知识进行解答。此类问题立意新颖,充满着变化,要解决此类问题,除了能根据轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答。类型一、求折叠中动点运动距离或线段长度的最值 例1. 动手操作:在矩形纸片ABCD中,AB=3,AD=5. 如图例1-1所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动. 若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为 .图例1-1 类型二、折叠问题中的类比问题 例2. (1)操作发现如图例2-1,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求保持(1)中条件不变,若DC=nDF,求的值. 图例2-1 图例2-2 类型三、折叠问题中的直角三角形存在性问题 例3. 如图例3-1,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为 图例3-1 例4. 如图例4-1,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为 . 图例4-1 例5. 如图例5-1,在中,,,,点,分别是边,上的动点,沿所在的直线折叠,使点的对应点始终落在边上.若为直角三角形,则的长为 . 图例5-1 例6. 如图例6-1,在∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A’BC与△ABC关于BC所在直线对称. D、E分别为AC、BC的中点,连接DE并延长交A’B所在直线于点F,连接A’E. 当△A’EF为直角三角形时,AB的长为 . 图例6-1 图例6-2 图例6-3 类型四、折叠问题中的等腰三角形存在性问题 例7. 如图例7-1,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .[图例7-1 类型五、折叠问题中的落点“固定”问题 例8. 如图例8-1,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为 .图例8-1 例9. 如图例9-1,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B’处,过点B’作AD的垂线,分别交AD、BC于点M、N,当点B’为线段MN的三等分点时,BE的长为 .图例9-1 刻意练习 第1题 第2题 第3题1. 如图,在矩形ABCD中,AB=3,BC=4,点M在BC上,点N是AB上的动点,将矩形ABCD沿MN折叠,设点B的对应点是点E,若点E在对角线AC上,则 AE的取值范围是 2. 如图,在矩形ABCD中,AB=10,AD=5,将矩形ABCD折叠,使点C落在边AB上的E处,折痕交DC边于点M,点F在DM上运动,当△AEF是腰长为5的等腰三角形时,EF的长为 3. 如图,在矩形纸片ABCD中,AB=5,AD=2,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,则四边形EPFD为菱形时,x的取值范围是 第4题 第5题 4. 如图,矩形ABCD中,点E为射线BC上的一个动点,连接AE,以AE为对称轴折叠△AEB,得到△AEB′,点B的对称点为点B′,若AB=5,BC=3,当点B′落在射线CD上时,线段BE的长为 .5. 如图,在Rt△ABC中,∠A=90°,∠B=30°,BC=+1,点E、F分别是BC、AC边上的动点,沿E、F所在直线折叠∠C,使点C的落对应点C'始终落在边AB上,若△BEC'是直角三角形时,则BC'的长为
相关试卷
这是一份【培优压轴】2021年中考几何压轴题分类导练 专题09 由动点引出的几种面积问题,文件包含专题09由动点引出的几种面积问题教师版doc、专题09由动点引出的几种面积问题学生版doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份专题07 旋转的应用(学生版) 备战2021年中考几何压轴题分类导练,共5页。
这是一份专题09 由动点引出的几种面积问题(学生版) 备战2021年中考几何压轴题分类导练,共5页。试卷主要包含了由动点问题引出的面积存在性问题等内容,欢迎下载使用。