2021学年平行教课ppt课件
展开1.直线与平面平行的判定与性质
a⊂α,b⊄α,a∥b
a∥α,a⊂β,α∩β=b
2.面面平行的判定与性质
a⊂β,b⊂β,a∩b=P,a∥α,b∥α
α∥β,α∩γ=a,β∩γ=b
3.常用结论(1)两个平面平行的有关结论①垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.②平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(2)在推证线面平行时,一定要强调直线不在平面内,否则会出现错误.
1.下列结论正确的打“√”,错误的打“×”.(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( )(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( )(3)若直线a与平面α内无数条直线平行,则a∥α.( )(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( )
2.已知正方体ABCD-A1B1C1D1,下列结论正确的是 (填序号). ①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.
所以四边形AD1C1B为平行四边形.故AD1∥BC1,从而①正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面,故③错误;因AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,故AD1∥平面BDC1,故④正确.
3.已知P是正方体ABCD-A1B1C1D1棱DD1上任意一点(不与端点重合),则该在正方体的12条棱中,与平面ABP平行的直线是 .
4.在四面体ABCD中,M,N分别是平面△ACD,△BCD的重心,则四面体的四个面中与MN平行的是 .
5.如图,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则点M满足条件 时,有MN∥平面B1BDD1.
例1(1)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β(2)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是( )A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β思考如何借助几何模型来找平行关系?
解题心得线面平行、面面平行的命题真假判断多以小题出现,处理方法是数形结合,画图或结合正方体等有关模型来解题.
对点训练1(1)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( )A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α(2)给出下列关于互不相同的直线l,m,n和平面α,β,γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为( )A.3 B.2 C.1 D.0
例2在如图所示的多面体中,DE⊥平面ABCD,AF∥DE,AD∥BC,AB=CD,∠ABC=60°,BC=2AD=4DE=4.(1)在AC上求作点P,使PE∥平面ABF,请写出作法并说明理由;(2)求三棱锥A-CDE的高.思考证明线面平行的关键是什么?
解:(1)取BC的中点G,连接DG,交AC于P,连接PE,此时P为所求作的点,如图所示.下面给出证明:∵BC=2AD,∴BG=AD,又BC∥AD,∴四边形BGDA为平行四边形,∴DG∥AB,即DP∥AB,又AB⊂平面ABF,DP⊄平面ABF,∴DP∥平面ABF,∵AF∥DE,AF⊂平面ABF,DE⊄平面ABF,∴DE∥平面ABF,又DP⊂平面PDE,DE⊂平面PDE,PD∩DE=D,∴平面ABF∥平面PDE,又PE⊂平面PDE,∴PE∥平面ABF.
(2)在等腰梯形ABCD中,∵∠ABG=60°,BC=2AD=4,
解题心得证明线面平行的关键点及探求线线平行的方法:(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线;(2)利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行;(3)注意说明已知的直线不在平面内,即三个条件缺一不可.
对点训练2如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
证明:(1)如图,取BD的中点O,连接CO,EO.因为CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC.因为EO⊂平面EOC,所以BD⊥EO.又O为BD的中点,所以BE=DE.
(2)如图,取AB的中点N,连接DM,DN,MN.因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°.又CB=CD,∠BCD=120°,所以∠CBD=30°.所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC,又MN∩DN=N,所以平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.
例3一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.思考证明面面平行的常用方法有哪些?
解 (1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形.所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.
解题心得证明面面平行的常用方法(1)面面平行的判定定理(常用方法):a⊂α,b⊂α,a∩b=P,a∥β, b∥β⇒α∥β.(2)判定定理的推论:a⊂α,b⊂α,a∩b=P,a∥a',b∥b',a'∩b'=P', a'⊂β,b'⊂β⇒α∥β.(3)垂直于同一条直线的两个平面平行.(4)平行于同一个平面的两个平面平行.(5)向量法:证明两个平面的法向量平行.
对点训练3如图,B为△ACD所在平面外一点,M,N,G分别为△ABC,△ABD,△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.
人教版三年级下册数学广角——搭配(二)完美版课件ppt: 这是一份人教版三年级下册数学广角——搭配(二)完美版课件ppt,共16页。PPT课件主要包含了一共要拍多少张照片,一共有9个长方形,路线一①③⑤,路线二①③⑥,路线五②③⑤,路线六②③⑥,路线三①④⑤,路线四①④⑥,路线七②④⑤,路线八②④⑥等内容,欢迎下载使用。
沪教版 (五四制)四年级下册垂直练习题课件ppt: 这是一份沪教版 (五四制)四年级下册垂直练习题课件ppt,共60页。PPT课件主要包含了考试要求,主干梳理基础落实,题型突破核心探究,课时精练,内容索引,a⊥αb⊥α,直二面角,l⊥αl⊂β,平面上的射影,2二面角等内容,欢迎下载使用。
数学四年级下册平行练习题课件ppt: 这是一份数学四年级下册平行练习题课件ppt,共60页。PPT课件主要包含了考试要求,主干梳理基础落实,题型突破核心探究,课时精练,内容索引,此平面内,l⊄α,l∥a,a⊂α,l⊂β等内容,欢迎下载使用。