2021年四川中考数学真题分类汇编之图形的性质
展开2021年四川中考数学真题分类汇编之图形的性质
一.选择题(共9小题)
1.(2021•宜宾)一块含有45°的直角三角板和直尺如图放置,若∠1=55°,则∠2的度数是( )
A.30° B.35° C.40° D.45°
2.(2021•达州)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=40°时,∠DCN的度数为( )
A.40° B.50° C.60° D.80°
3.(2021•广元)观察下列作图痕迹,所作线段CD为△ABC的角平分线的是( )
A.
B.
C.
D.
4.(2021•广安)如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走( )米.
A.6π﹣6 B.6π﹣9 C.12π﹣9 D.12π﹣18
5.(2021•雅安)如图,在Rt△ABC中,∠ABC=90°,BF是AC边上的中线,DE是△ABC的中位线,若DE=6,则BF的长为( )
A.6 B.4 C.3 D.5
6.(2021•雅安)如图,将△ABC沿BC边向右平移得到△DEF,DE交AC于点G.若BC:EC=3:1.S△ADG=16.则S△CEG的值为( )
A.2 B.4 C.6 D.8
7.(2021•宜宾)下列说法正确的是( )
A.平行四边形是轴对称图形
B.平行四边形的邻边相等
C.平行四边形的对角线互相垂直
D.平行四边形的对角线互相平分
8.(2021•广元)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )
A. B. C. D.1
9.(2021•乐山)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆而成的“叶问蹬”图,则图中抬起的“腿”(即阴影部分)的面积为( )
A.3 B. C.2 D.
二.填空题(共3小题)
10.(2021•广安)一个多边形的内角和是外角和的3倍,则这个多边形的边数是 .
11.(2021•雅安)如图,ABCDEF为正六边形,ABGH为正方形,则图中∠BCG的度数为 .
12.(2021•雅安)如图,在矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC于点M,交CD于点F,过点D作DE∥BF交AC于点N.交AB于点E,连接FN,EM.有下列结论:①四边形NEMF为平行四边形;②DN2=MC•NC;③△DNF为等边三角形;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的序号 .
三.解答题(共6小题)
13.(2021•广安)如图,四边形ABCD是菱形,点E、F分别在边AB、AD的延长线上,且BE=DF,连接CE、CF.求证:CE=CF.
14.(2021•雅安)如图,△OAD为等腰直角三角形,延长OA至点B使OB=OD,ABCD是矩形,其对角线AC,BD交于点E,连接OE交AD于点F.
(1)求证:△OAF≌△DAB;
(2)求的值.
15.(2021•广安)如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB的端点都在格点上.要求以AB为边画一个平行四边形,且另外两个顶点在格点上.请在下面的网格图中画出4种不同的设计图形
16.(2021•南充)如图,A,B是⊙O上两点,且AB=OA,连接OB并延长到点C,使BC=OB,连接AC.
(1)求证:AC是⊙O的切线;
(2)点D,E分别是AC,OA的中点,DE所在直线交⊙O于点F,G,OA=4,求GF的长.
17.(2021•凉山州)如图,在Rt△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的外接圆,交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为5,AC=8,求S△BDE.
18.(2021•眉山)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=2,边长为2的正方形DEFG的对角线交点与点C重合,连接AD,BE.
(1)求证:△ACD≌△BCE;
(2)当点D在△ABC内部,且∠ADC=90°时,设AC与DG相交于点M,求AM的长;
(3)将正方形DEFG绕点C旋转一周,当点A、D、E三点在同一直线上时,请直接写出AD的长.
2021年四川中考数学真题分类汇编之图形的性质
参考答案与试题解析
一.选择题(共9小题)
1.(2021•宜宾)一块含有45°的直角三角板和直尺如图放置,若∠1=55°,则∠2的度数是( )
A.30° B.35° C.40° D.45°
【考点】平行线的性质;等腰直角三角形.菁优网版权所有
【专题】线段、角、相交线与平行线;等腰三角形与直角三角形;推理能力.
【分析】根据平行线的性质及对顶角相等求解即可.
【解答】解:如图,延长ME,交CD于点F,
∵AB∥CD,∠1=55°,
∴∠MFC=∠1=55°,
在Rt△NEF中,∠NEF=90°,
∴∠3=90°﹣∠MFC=35°,
∴∠2=∠3=35°,
故选:B.
【点评】此题考查了平行线的性质,熟记平行线的性质定理及对顶角相等是解题的关键.
2.(2021•达州)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=40°时,∠DCN的度数为( )
A.40° B.50° C.60° D.80°
【考点】平行线的性质.菁优网版权所有
【专题】线段、角、相交线与平行线;推理能力.
【分析】根据“两直线平行,同旁内角互补”解答即可.
【解答】解:∵∠ABM=40°,∠ABM=∠OBC,
∴∠OBC=40°,
∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣40°﹣40°=100°,
∵CD∥AB,
∴∠ABC+∠BCD=180°,
∴∠BCD=180°﹣∠ABC=80°,
∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,
∴∠DCN=(180°﹣∠BCD)=50°,
故选:B.
【点评】此题考查了平行线的性质,熟记“两直线平行,同旁内角互补”是解题的基础.
3.(2021•广元)观察下列作图痕迹,所作线段CD为△ABC的角平分线的是( )
A.
B.
C.
D.
【考点】三角形的角平分线、中线和高;作图—基本作图.菁优网版权所有
【专题】作图题;几何直观.
【分析】根据基本作图的方法对各选项进行判断.
【解答】解:根据基本作图,A、D选项中为过C点作AB的垂线,B选项作AB的垂直平分线得到AB边上的中线CD,C选项作CD平分∠ACB.
故选:C.
【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的角平分线、中线和高.
4.(2021•广安)如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走( )米.
A.6π﹣6 B.6π﹣9 C.12π﹣9 D.12π﹣18
【考点】勾股定理;垂径定理;弧长的计算.菁优网版权所有
【专题】与圆有关的计算;应用意识.
【分析】作OC⊥AB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A,从而得到OC和AC,可得AB,然后利用弧长公式计算出的长,最后求它们的差即可.
【解答】解:作OC⊥AB于C,如图,
则AC=BC,
∵OA=OB,∠AOB=120°,
∴∠A=∠B=(180°﹣∠AOB)=30°,
在Rt△AOC中,OC=OA=9米,
AC==米,
∴AB=2AC=米,
又∵=米,
∴走便民路比走观赏路少走()米,
故选:D.
【点评】本题考查了垂径定理,勾股定理,解题的关键是构造直角三角形,可解决计算弦长、半径、弦心距等问题.
5.(2021•雅安)如图,在Rt△ABC中,∠ABC=90°,BF是AC边上的中线,DE是△ABC的中位线,若DE=6,则BF的长为( )
A.6 B.4 C.3 D.5
【考点】直角三角形斜边上的中线;三角形中位线定理.菁优网版权所有
【专题】等腰三角形与直角三角形;推理能力.
【分析】根据三角形中位线定理求出AC,根据直角三角形的斜边上的中线等于斜边的一半计算,得到答案.
【解答】解:∵DE是△ABC的中位线,若DE=6,
∴AC=2DE=12,
在Rt△ABC中,∠ABC=90°,BF是AC边上的中线,
∴BF=AC=6,
故选:A.
【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
6.(2021•雅安)如图,将△ABC沿BC边向右平移得到△DEF,DE交AC于点G.若BC:EC=3:1.S△ADG=16.则S△CEG的值为( )
A.2 B.4 C.6 D.8
【考点】三角形的面积;平移的性质.菁优网版权所有
【专题】平移、旋转与对称;几何直观.
【分析】根据平移的性质得出AD=BE,进而得出BE:EC=2:1,利用三角形面积之比解答即可.
【解答】解:由平移性质可得,AD∥BE,AD=BE,
∴△ADG∽△ECG,
∵BC:EC=3:1,
∴BE:EC=2:1,
∴AD:EC=2:1,
∴=4,
∵S△ADG=16,
∴S△CEG=4,
故选:B.
【点评】此题考查平移的性质和三角形的面积,关键是根据平移的性质得出三角形面积之比解答.
7.(2021•宜宾)下列说法正确的是( )
A.平行四边形是轴对称图形
B.平行四边形的邻边相等
C.平行四边形的对角线互相垂直
D.平行四边形的对角线互相平分
【考点】平行线的性质;轴对称图形.菁优网版权所有
【专题】多边形与平行四边形;应用意识.
【分析】根据平行四边形的性质以及平行四边形的对称性对各选项分析判断即可得解.
【解答】解:A、平行四边形不是轴对称图形而是中心对称图形,故原命题错误,不符合题意;
B、平行四边形的邻边不等,对边相等,故原命题错误,不符合题意;
C、平行四边形对角线互相平分,错误,故本选项不符合题意;
D、平行四边形对角线互相平分,正确,故本选项符合题意.
故选:D.
【点评】本题考查了中轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
8.(2021•广元)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )
A. B. C. D.1
【考点】圆锥的计算.菁优网版权所有
【专题】与圆有关的计算;运算能力.
【分析】首先求得扇形的弧长,然后利用圆的周长公式即可求得.
【解答】解:∵⊙O的直径为2,则半径是:1,
∴S⊙O=π×12=π,
连接BC、AO,根据题意知BC⊥AO,AO=BO=1,
在Rt△ABO中,AB==,
即扇形的对应半径R=,
弧长l==,
设圆锥底面圆半径为r,则有
2πr=,
解得:r=.
故选:B.
【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
9.(2021•乐山)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆而成的“叶问蹬”图,则图中抬起的“腿”(即阴影部分)的面积为( )
A.3 B. C.2 D.
【考点】七巧板.菁优网版权所有
【专题】矩形 菱形 正方形;几何直观.
【分析】分别求出阴影部分平行四边形,三角形的面积可得结论.
【解答】解:由题意,阴影部分的平行四边形的面积=2×1=2,
阴影部分的三角形的面积=×2×1=1,
∴阴影部分的面积=2+1=3,
故选:A.
【点评】本题考查七巧板,正方形的性质,平行四边形的性质,等腰直角三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
二.填空题(共3小题)
10.(2021•广安)一个多边形的内角和是外角和的3倍,则这个多边形的边数是 八 .
【考点】多边形内角与外角.菁优网版权所有
【分析】根据多边形的内角和定理,多边形的内角和等于(n﹣2)•180°,外角和等于360°,然后列方程求解即可.
【解答】解:设多边形的边数是n,根据题意得,
(n﹣2)•180°=3×360°,
解得n=8,
∴这个多边形为八边形.
故答案为:八.
【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.
11.(2021•雅安)如图,ABCDEF为正六边形,ABGH为正方形,则图中∠BCG的度数为 15° .
【考点】多边形内角与外角.菁优网版权所有
【专题】多边形与平行四边形;几何直观;运算能力.
【分析】分别求出正六边形和正方形的一个内角度数,再求出∠CBG的大小,即可求解.
【解答】解:∵ABCDEF为正六边形,ABGH为正方形,
∴AB=BC=BG,
∴∠BCG=∠BGC,
∵正六边形ABCDEF的每一个内角是4×180°÷6=120°,
正方形ABGH的每个内角是90°,
∴∠CBG=360°﹣120°﹣90°=150°,
∴∠BCG+∠BGC=180°﹣150°=30°,
∴∠BCG=15°.
故答案为:15°.
【点评】本题考查正多边形的内角.熟练掌握正多边形内角的求法是解题的关键.
12.(2021•雅安)如图,在矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC于点M,交CD于点F,过点D作DE∥BF交AC于点N.交AB于点E,连接FN,EM.有下列结论:①四边形NEMF为平行四边形;②DN2=MC•NC;③△DNF为等边三角形;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的序号 ①②④ .
【考点】四边形综合题.菁优网版权所有
【专题】矩形 菱形 正方形;推理能力.
【分析】①正确.想办法证明EN=FM,EN∥FM,可得结论.
②正确.证明△AMB∽△BMC,推出=,再证明DN=BM,AM=CN,可得结论.
③错误.用反证法证明即可.
④正确.证明DE=BE,可得结论.
【解答】解:∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,CD∥AB
∴∠DAN=∠BCM,
∵BF⊥AC,DE∥BF,
∴DE⊥AC,
∴∠DNA=∠BMC=90°,
在△ADN和△CBM中,
,
∴△ADN≌△CBM(AAS),
∴DN=BM,
∵DF∥BE,DE∥BF,
∴四边形DFBE是平行四边形,
∴DE=BF,
∴EN=FM,
∵NE∥FM,
∴四边形NEMF是平行四边形,故①正确,
∵△ADN≌△CBM,
∴AN=CM,
∴CN=AM,
∵∠AMB=∠BMC=∠ABC=90°,
∴∠ABM+∠CBM=90°,∠CBM+∠BCM=90°,
∴∠ABM=∠BCM,
∴△AMB∽△BMC,
∴=,
∵DN=BM,AM=CN,
∴DN2=CM•CN,故②正确,
若△DNF是等边三角形,则∠CDN=60°,∠ACD=30°,
这个与题目条件不符合,故③错误,
∵四边形ABCD是矩形,
∴OA=OD,
∵AO=AD,
∴AO=AD=OD,
∴△AOD是等边三角形,
∴∠ADO=∠DAN=60°,
∴∠ABD=90°﹣∠ADO=30°,
∵DE⊥AC,
∴∠ADN=ODN=30°,
∴∠ODN=∠ABD,
∴DE=BE,
∵四边形DEBF是平行四边形,
∴四边形DEBF是菱形;故④正确.
故答案为:①②④.
【点评】本题考查了矩形的性质、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的判定等知识;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.
三.解答题(共6小题)
13.(2021•广安)如图,四边形ABCD是菱形,点E、F分别在边AB、AD的延长线上,且BE=DF,连接CE、CF.求证:CE=CF.
【考点】全等三角形的判定与性质;菱形的性质.菁优网版权所有
【专题】矩形 菱形 正方形;推理能力.
【分析】由四边形ABCD是菱形,得出BC=CD,∠ABC=∠ADC,根据等角的补角相等得出∠CBE=∠CDF,从而△CDF≌△CBE(SAS)即可.
【解答】证明:∵四边形ABCD是菱形,
∴BC=CD,∠ABC=∠ADC,
∵∠ABC+∠CBE=180°,
∠ADC+∠CDF=180°,
∴∠CBE=∠CDF,
在△CDF和△CBE中,
,
∴△CDF≌△CBE(SAS),
∴CE=CF.
【点评】本题主要考查了菱形的性质,以及全等三角形的判定与性质,证出∠CBE=∠CDF是解题的关键.
14.(2021•雅安)如图,△OAD为等腰直角三角形,延长OA至点B使OB=OD,ABCD是矩形,其对角线AC,BD交于点E,连接OE交AD于点F.
(1)求证:△OAF≌△DAB;
(2)求的值.
【考点】全等三角形的判定与性质;等腰直角三角形;矩形的性质.菁优网版权所有
【专题】几何综合题;推理能力.
【分析】(1)根据矩形的性质和等腰直角三角形的性质得到∠BOE=∠BDA,AO=AD,∠OAD=∠BAD,进而可以判定;
(2)由△OAF≌△DAB得到AF=AB,得到AF与BF的关系,利用垂直平分线的性质得到DF=BF,进而可得.
【解答】解:(1)证明:∵四边形ABCD是矩形,
∴BE=DE,∠BAD=90°,
∴∠ABD+∠ADB=90°,
∵OB=OD,BE=DE,
∴OE⊥BD,
∴∠OEB=90°,
∴∠BOE+∠OBE=90°,
∴∠BOE=∠BDA,
∵△OAD为等腰直角三角形,
∴AO=AD,∠OAD=90°,
∴∠OAD=∠BAD,
在△AOF和△ABD中,
,
∴△OAF≌△DAB(ASA),
(2)由(1)得,△OAF≌△DAB,
∴AF=AB,
连接BF,如图,
∴BF=AF,
∵BE=DE,OE⊥BD,
∴DF=BF,
∴DF=AF,
∴=.
【点评】本题主要考查了矩形的性质,等腰直角三角形的性质,全等三角形的判定和性质,关键是熟记这些图形的性质.
15.(2021•广安)如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB的端点都在格点上.要求以AB为边画一个平行四边形,且另外两个顶点在格点上.请在下面的网格图中画出4种不同的设计图形
【考点】等边三角形的性质;作图—复杂作图.菁优网版权所有
【专题】作图题;几何直观.
【分析】根据平行四边形的判定画出图形即可.
【解答】解:如图,四边形ABCD即为所求.
【点评】本题考查作图﹣复杂作图,等边三角形的性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.
16.(2021•南充)如图,A,B是⊙O上两点,且AB=OA,连接OB并延长到点C,使BC=OB,连接AC.
(1)求证:AC是⊙O的切线;
(2)点D,E分别是AC,OA的中点,DE所在直线交⊙O于点F,G,OA=4,求GF的长.
【考点】三角形中位线定理;垂径定理;切线的判定与性质.菁优网版权所有
【专题】与圆有关的位置关系;与圆有关的计算;推理能力.
【分析】(1)证明∠OAC=90°即可;
(2)求弦长,根据垂径定理先求出弦长的一半即可.连结OF,过点O作OH⊥GF于点H,根据中位线定理得DE∥OC,所以∠OEH=∠AOB=60°,求出OH,根据勾股定理求出HF,乘2即可求出GF.
【解答】(1)证明:∵AB=OA=OB,
∴△OAB是等边三角形.
∴∠AOB=∠OBA=∠OAB=60°.
∵BC=OB,
∴BC=AB,
∴∠BAC=∠C,
∵∠OBA=∠BAC+∠C=60°,
∴∠BAC=∠C=30°.
∴∠OAC=∠OAB+∠BAC=90°.
∴OA⊥AC,
∴点A在⊙O上,
∴AC是⊙O的切线;
(2)解:如图,连结OF,过点O作OH⊥GF于点H.
∴GF=2HF,∠OHE=∠OHF=90°.
∵点D,E分别是AC,OA的中点,
∴OE=AE=OA=×4=2,DE∥OC.
∴∠OEH=∠AOB=60°,OH=OEsin∠OEH=.
∴HF===.
∴GF=2HF=2.
【点评】本题考查了切线的判定,三角形中位线定理,垂径定理,属于中档题,构造直角三角形,利用勾股定理求出HF的长是解题的关键.
17.(2021•凉山州)如图,在Rt△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的外接圆,交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为5,AC=8,求S△BDE.
【考点】圆周角定理;三角形的外接圆与外心;切线的判定与性质.菁优网版权所有
【专题】等腰三角形与直角三角形;与圆有关的位置关系;图形的相似;推理能力;模型思想.
【分析】(1)根据直角三角形两锐角互余,等腰三角形性质以及等量代换可得出∠AEC+∠OEA=90°,即OE⊥BC,从而得出BC是⊙O的切线;
(2)根据△ACE∽△AED和勾股定理可求出AE,DE,根据角平分线的性质可得出三角形BDE的BD边上的高EM,再根据相似三角形和勾股定理求出BD即可.
【解答】解:(1)连接OE,
∵∠C=90°,
∴∠2+∠AEC=90°,
又∵OA=OE,
∴∠1=∠OEA,
∵∠1=∠2,
∴∠AEC+∠OEA=90°,
即OE⊥BC,
∴BC是⊙O的切线;
(2)过点E作EM⊥AB,垂足为M,
∵∠1=∠2,∠C=∠AED=90°,
∴△ACE∽△AED,
∴=,
即=,
∴AE=4,
由勾股定理得,
CE==4=EM,
DE==2,
∵∠DEB=∠1,∠B=∠B,
∴△BDE∽△BEA,
∴==,
设BD=x,则BE=2x,
在Rt△BOE中,由勾股定理得,
OE2+BE2=OB2,
即52+(2x)2=(5+x)2,
解得x=,
∴S△BDE=BD•EM
=××4
=.
【点评】本题考查切线的判定,相似三角形,勾股定理,掌握切线的判定方法,相似三角形的判定和性质以及勾股定理是解决问题的前提.
18.(2021•眉山)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=2,边长为2的正方形DEFG的对角线交点与点C重合,连接AD,BE.
(1)求证:△ACD≌△BCE;
(2)当点D在△ABC内部,且∠ADC=90°时,设AC与DG相交于点M,求AM的长;
(3)将正方形DEFG绕点C旋转一周,当点A、D、E三点在同一直线上时,请直接写出AD的长.
【考点】四边形综合题.菁优网版权所有
【专题】几何综合题;推理能力.
【分析】(1)由等腰直角三角形的性质和正方形两条对角线互相垂直平分且相等的性质,可证明△ACD≌△BCE;
(2)过点M作MH⊥AD于点H,当∠ADC=90°时,则∠ADM=45°,由正方形的边长和AC的长,可计算出AD的长,利用△AMH和△DMH边之间的特殊关系列方程,可求出AM的长;
(3)A、D、E三点在同一直线上又分两种情况,即点D在A、E两点之间或在射线AE上,需要先证明点B、E、F也在同一条直线上,然后在△ABE中用勾股定理列方程即可求出AD的长.
【解答】解:(1)如图1,∵四边形DEFG是正方形,
∴∠DCE=90°,CD=CE;
∵∠ACB=90°,
∴∠ACD=∠BCE=90°﹣∠BCD,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
(2)如图1,过点M作MH⊥AD于点H,则∠AHM=∠DHM=90°.
∵∠DCG=90°,CD=CG,
∴∠CDG=∠CGD=45°,
∴∠ADC=90°,
∴∠MDH=90°﹣45°=45°,
∴MH=DH•tan45°=DH;
∵CD=DG•sin45°=2×=,AC=2,
∴AD==,
∴=tan∠CAD==,
∴AH=3MH=3DH,
∴3DH+DH=3;
∴MH=DH=,
∵=sin∠CAD==,
∴AM=MH=×=.
(3)如图3,A、D、E三点在同一直线上,且点D在点A和点E之间.
∵CD=CE=CF,∠DCE=∠ECF=90°,
∴∠CDE=∠CED=∠CEF=∠CFE=45°;
由△ACD≌△BCE,得∠BEC=∠ADC=135°,
∴∠BEC+∠CEF=180°,
∴点B、E、F在同一条直线上,
∴∠AEB=90°,
∵AE2+BE2=AB2,且DE=2,AD=BE,
∴(AD+2)2+AD2=(2)2+(2)2,
解得AD=﹣1或AD=﹣﹣1(不符合题意,舍去);
如图4,A、D、E三点在同一直线上,且点D在AE的延长线上.
∵∠BCF=∠ACE=90°﹣∠ACF,BC=AC,CF=CE,
∴△BCF≌△ACE(SAS),
∴∠BFC=∠AEC,
∵∠CFE=∠CED=45°,
∴∠BFC+∠CFE=∠AEC+∠CED=180°,
∴点B、F、E在同一条直线上;
∵AC=BC,∠ACD=∠BCE=90°+∠ACE,CD=CE,
∴△ACD≌△BCE(SAS),
∴AD=BE;
∵AE2+BE2=AB2,
∴(AD﹣2)2+AD2=(2)2+(2)2,
解得AD=+1或AD=﹣1(不符合题意,舍去).
综上所述,AD的长为﹣1或+1.
【点评】此题重点考查正方形的性质、等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次根式的化简等知识与方法,解第(3)题时要分类讨论,以免丢解.
考点卡片
1.七巧板
(1)七巧板是由下面七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边形.
(2)用这七块板可以拼搭成几何图形,如三角形、平行四边形、不规则的多角形等;也可以拼成各种具体的人物形象,或者动物或者是一些中、英文字符号.
(3)制作七巧板的方法:①首先,在纸上画一个正方形,把它分为十六个小方格.②再从左上角到右下角画一条线.③在上面的中间连一条线到右面的中间.④再在左下角到右上角画一条线,碰到第二条线就可以停了.⑤从刚才的那条线的尾端开始一条线,画到最下面四份之三的位置,从左边开始数,碰到线就可停.⑥最后,把它们涂上不同的颜色并跟著黑线条剪开,你就有一副全新的七巧板了.
2.平行线的性质
1、平行线性质定理
定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.
定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.
定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2、两条平行线之间的距离处处相等.
3.三角形的角平分线、中线和高
(1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.
(2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.
(3)三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
(4)三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.
(5)锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.
4.三角形的面积
(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.
(2)三角形的中线将三角形分成面积相等的两部分.
5.全等三角形的判定与性质
(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
6.等边三角形的性质
(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.
①它可以作为判定一个三角形是否为等边三角形的方法;
②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.
(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.
7.直角三角形斜边上的中线
(1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)
(2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.
该定理可以用来判定直角三角形.
8.勾股定理
(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
(2)勾股定理应用的前提条件是在直角三角形中.
(3)勾股定理公式a2+b2=c2 的变形有:a=,b=及c=.
(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.
9.等腰直角三角形
(1)两条直角边相等的直角三角形叫做等腰直角三角形.
(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);
(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.
10.三角形中位线定理
(1)三角形中位线定理:
三角形的中位线平行于第三边,并且等于第三边的一半.
(2)几何语言:
如图,∵点D、E分别是AB、AC的中点
∴DE∥BC,DE=BC.
11.多边形内角与外角
(1)多边形内角和定理:(n﹣2)•180° (n≥3且n为整数)
此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.
(2)多边形的外角和等于360°.
①多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.
②借助内角和和邻补角概念共同推出以下结论:外角和=180°n﹣(n﹣2)•180°=360°.
12.菱形的性质
(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.
(2)菱形的性质
①菱形具有平行四边形的一切性质;
②菱形的四条边都相等;
③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
(3)菱形的面积计算
①利用平行四边形的面积公式.
②菱形面积=ab.(a、b是两条对角线的长度)
13.矩形的性质
(1)矩形的定义:有一个角是直角的平行四边形是矩形.
(2)矩形的性质
①平行四边形的性质矩形都具有;
②角:矩形的四个角都是直角;
③边:邻边垂直;
④对角线:矩形的对角线相等;
⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.
(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.
14.四边形综合题
四边形综合题.
15.垂径定理
(1)垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(2)垂径定理的推论
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
16.圆周角定理
(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.
注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.
(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.
(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.
17.三角形的外接圆与外心
(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.
(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.
(3)概念说明:
①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.
②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.
③找一个三角形的外心,就是找一个三角形的三条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.
18.切线的判定与性质
(1)切线的性质
①圆的切线垂直于经过切点的半径.
②经过圆心且垂直于切线的直线必经过切点.
③经过切点且垂直于切线的直线必经过圆心.
(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
(3)常见的辅助线的:
①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;
②有切线时,常常“遇到切点连圆心得半径”.
19.弧长的计算
(1)圆周长公式:C=2πR
(2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)
①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.
②若圆心角的单位不全是度,则需要先化为度后再计算弧长.
③题设未标明精确度的,可以将弧长用π表示.
④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.
20.圆锥的计算
(1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.
(2)圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
(3)圆锥的侧面积:S侧=•2πr•l=πrl.
(4)圆锥的全面积:S全=S底+S侧=πr2+πrl
(5)圆锥的体积=×底面积×高
注意:①圆锥的母线与展开后所得扇形的半径相等.
②圆锥的底面周长与展开后所得扇形的弧长相等.
21.作图—基本作图
基本作图有:
(1)作一条线段等于已知线段.
(2)作一个角等于已知角. (3)作已知线段的垂直平分线. (4)作已知角的角平分线. (5)过一点作已知直线的垂线.
22.作图—复杂作图
复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.
解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
23.轴对称图形
(1)轴对称图形的概念:
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.
(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.
(3)常见的轴对称图形:
等腰三角形,矩形,正方形,等腰梯形,圆等等.
24.平移的性质
(1)平移的条件
平移的方向、平移的距离
(2)平移的性质
①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. ②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/8/3 14:42:36;用户:招远2;邮箱:zybzy2@xyh.com;学号:4029210
2017-2021年广东中考数学真题分类汇编之图形的性质: 这是一份2017-2021年广东中考数学真题分类汇编之图形的性质,共44页。
2017-2021年四川中考数学真题分类汇编之图形的性质: 这是一份2017-2021年四川中考数学真题分类汇编之图形的性质,共50页。试卷主要包含了去最省事等内容,欢迎下载使用。
2021年山东中考数学真题分类汇编之图形的性质(无答案): 这是一份2021年山东中考数学真题分类汇编之图形的性质(无答案),共11页。