|课件下载
搜索
    上传资料 赚现金
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT
    立即下载
    加入资料篮
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT01
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT02
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT03
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT04
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT05
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT06
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT07
    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT08
    还剩41页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT

    展开
    这是一份2021-2022学年人教版数学中考专题复习之二次函数压轴题课件PPT,共49页。PPT课件主要包含了自主解答略等内容,欢迎下载使用。

    1.主要类型:(1)线段及周长最值问题(2)面积最值问题(3)存在性问题探究
    2.规律方法:(1)解决线段和的最小值或三角形周长最小问题,主要依据是“两点之间,线段最短”,具体方法是利用轴对称将两条线段之和转化为一条线段的长,然后求出该条线段的长.
    (2)解决图形面积的最值问题,通常先设出动点坐标,然后表示出图形面积,利用二次函数性质来求最大值或最小值,表示不规则图形的面积时,通常采用割补法把其转化为易于表示面积的图形(有一边在坐标轴上或平行于坐标轴).
    (3)解决存在性问题要先假设结论成立,然后根据所探究特殊图形的有关性质,利用分类讨论的数学思想构造全等或相似图形,进而求出字母的取值.3.渗透的思想:分类讨论、转化思想、数形结合、函数与方程等.
    类型一 线段及周长最值问题【考点解读】1.考查范畴:线段和周长最值问题主要包括线段和的最小值、周长和的最小值和线段差的最大值三种情况.
    2.考查角度:利用二次函数解析式确定有关点的坐标,结合某个动点考查两条线段和或差的最值问题.
    【典例探究】典例1(2018·宜宾节选)在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y= x与抛物线交于A,B两点,直线l为y=-1.
    (1)求抛物线的解析式.(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.
    【思路点拨】(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式.
    (2)联立直线AB与抛物线解析式组成方程组,通过解方程组可求出点A,B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A,B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.
    【规律方法】解决线段和最小值问题的方法(1)解题的基本依据是“两点之间,线段最短”,如图所示,若A,B是两个定点,动点P在直线m上,求PA+PB的最小值的方法是:作点A关于直线m的对称点A′,当A′,P,B三点共线时PA+PB最小.
    (2)确定动点P的位置后,再根据两条直线的解析式联立组成方程组,进而求出交点P的坐标.
    【题组过关】1.(2019·烟台中考)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(-1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y= (x>0)经过点D,连接MD,BD.
    (1)求抛物线的解析式.(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标.(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)
    2.(2019·贺州中考)如图,在平面直角坐标系中,已知点B的坐标为(-1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.
    (1)求A,C两点的坐标.(2)求抛物线的解析式.(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.
    【解析】(1)OA=OC=4OB=4,故点A,C的坐标分别为(4,0),(0,-4).(2)抛物线的解析式为:y=a(x+1)(x-4)=a(x2-3x-4),即-4a=-4,解得:a=1,故抛物线的解析式为:y=x2-3x-4.
    (3)直线CA过点C,设其函数解析式为:y=kx-4,将点A坐标代入上式并解得:k=1,故直线CA的解析式为:y=x-4,过点P作y轴的平行线交AC于点H,
    ∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2-3x-4),则点H(x,x-4),
    PD=HPsin∠PHD= (x-4-x2+3x+4)= x2+ x,∵ <0,∴PD有最大值,当x=2时,其最大值为 ,此时点P(2,-6).
    类型二 面积最值问题【考点解读】1.考查范畴:以二次函数为背景,面积最值问题主要包括三角形面积问题和四边形面积问题.2.考查角度:建立几何图形面积与动点的坐标的二次函数关系,然后确定最值.
    【典例探究】 典例2(2019·海南中考节选)如图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x轴的另一个交点为C,顶点为D,连接CD.
    (1)求该抛物线的解析式.(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.当点P在直线BC的下方运动时,求△PBC的面积的最大值.
    【自主解答】(1)将点A,B坐标代入二次函数解析式得: 解得: 故抛物线的解析式为:y=x2+6x+5①,
    (2)令y=0,则x=-1或-5,即点C(-1,0),如图,过点P作y轴的平行线交BC于点G,
    将点B,C的坐标代入一次函数解析式并解得:直线BC的表达式为:y=x+1②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC= PG(xC-xB)= (t+1-t2-6t-5)= ∵ <0,∴S△PBC有最大值,当t= 时,其最大值为
    【规律方法】解决面积最值问题的方法(1)首先设出动点的坐标为(x,ax2+bx+c).
    (2)求有一边在坐标轴或与坐标轴平行的图形面积时,用该边为底边用含x的式子表示出来,结合图形可用x的代数式表示出该边上的高;求三边不在坐标轴上的三角形或不规则图形面积时,要先采用割补的方法转化成易于表示出面积的图形.
    (3)用含有未知数x的代数式表示图形面积.(4)利用二次函数的性质来求最大值或最小值.
    【题组过关】如图,在平面直角坐标系中,抛物线y=ax2+bx-5交y轴于点A,交x轴于点B(-5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.
    (1)求此抛物线的解析式.(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积.(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.
    类型三 存在性问题探究【考点解读】1.考查范畴:以二次函数为背景的存在性问题包括探究等腰三角形、直角三角形、相似三角形和特殊四边形的形状.
    2.考查角度:考查是否存在某点,使图形满足某种特殊形状,根据图形性质解答问题.
    【典例探究】典例3已知抛物线y= 的图象如图所示:
    (1)将该抛物线向上平移2个单位,分别交x轴于A,B两点,交y轴于点C,则平移后的解析式为________. (2)判断△ABC的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P,使得以A,C,P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
    【思路点拨】(1)根据函数图象的平移规律,可得新的函数解析式.(2)根据自变量与函数值的对应关系,可得A,B,C的坐标,根据勾股定理及逆定理,可得答案.(3)根据等腰三角形的定义,分类讨论得到关于P点纵坐标的方程,解方程可得答案.
    【规律方法】探究等腰三角形存在性的方法(1)假设结论成立.(2)分别表示三角形三条边的长度,分三种情况进行讨论,根据两边相等列出方程,然后求出对应的未知数的值.
    (3)表示三边长度往往需要用到点的坐标,要掌握抛物线和直线与坐标轴的交点坐标求法,并能够利用解方程组求抛物线与直线的交点坐标.
    【题组过关】(2019·贵港中考)如图,已知抛物线y=ax2+bx+c的顶点为A(4,3),与y轴相交于点B(0,-5),对称轴为直线l,点M是线段AB的中点.
    (1)求抛物线的解析式.(2)写出点M的坐标并求直线AB的解析式.(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.
    【解析】(1)函数解析式为:y=a(x-4)2+3,将点B坐标代入上式并解得:a= ,故抛物线的解析式为:y= x2+4x-5.
    相关课件

    2021-2022学年人教版数学中考专题复习之二次函数中的存在性问题 (2)课件PPT: 这是一份2021-2022学年人教版数学中考专题复习之二次函数中的存在性问题 (2)课件PPT,共16页。PPT课件主要包含了自主解答略等内容,欢迎下载使用。

    2021-2022学年人教版数学中考专题复习之二次函数中的存在性问题课件PPT: 这是一份2021-2022学年人教版数学中考专题复习之二次函数中的存在性问题课件PPT,共30页。

    2021-2022学年人教版数学中考专题复习之二次函数的应用课件PPT: 这是一份2021-2022学年人教版数学中考专题复习之二次函数的应用课件PPT,共57页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map