2021年人教版数学八年级下册期末专题复习《动点问题》(含答案)
展开这是一份2021年人教版数学八年级下册期末专题复习《动点问题》(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021年人教版数学八年级下册
期末专题复习《动点问题》
一、选择题
1.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
A. B. C. D.
2.如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为( )
A.3 B.4 C.5 D.6
3.如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点.PC+PD值最小时点P的坐标为( )
A.(-3,0) B.(-6,0 ) C.(-1.5,0) D.(-2.5,0)
4.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )
A.4.8 B.5 C.6 D.7.2
5.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有( )
A.5个 B.4个 C.3个 D.2个
6.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是( )
A.4≥x>2.4 B.4≥x≥2.4 C.4>x>2.4 D.4>x≥2.4
7.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB 边上一动点,以PA,PC为边作□PAQC,则对角线PQ长度的最小值为( )
A.6 B.8 C.2 D.4
8.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是( )
A. B.﹣1 C. D.
9.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为( )
A.1.5 B.2.5 C.2.25 D.3
10.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有( )
A.4个 B.3个 C.2个 D.1个
二、填空题
11.无论m取什么实数,点A(m+1,2m-2)都在直线l上,若点B(a,b)是直线l上的动点,则(2a-b-6)3的值等于
12.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP= .
13.矩形ABCD中,AB=10,BC=4,Q为AB边的中点,P为CD边上的动点,且△AQP是腰长为5的等腰三角形,则CP的长为 .
14.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、B分别在x、y轴的正半轴上,OA=3,OB=4,D为OB边的中点,E是OA边上的一个动点,当△CDE的周长最小时,E点坐标为 .
15.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3,P是AC上一动点,则PB+PE最小值是 .
16.如图,正方形ABCD中,AB=2,AC,BD交于点O.若E,F分别是边AB,BC上的动点,且OE⊥OF,则△OEF周长的最小值是 .
17.如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.
下列结论:
①CQ=CD;
②四边形CMPN是菱形;
③P,A重合时,MN=2;
④△PQM的面积S的取值范围是3≤S≤5.
其中正确的是 (把正确结论的序号都填上).
18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为 .
三、解答题
19.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的角平分线于点E,交∠ACB的外角角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
20.如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.
(1)直接写出A、B两点的坐标 ;
(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;
(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.
请直接写出D的坐标 .
21.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x
(1)用含x的代数式表示AC+CE的长;
(2)请问点C满足什么条件时,AC+CE的值最小?
(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.
22.长方形ABCD中,AD=10,AB=8,将长方形ABCD折叠,折痕为EF.
(1)当A′与B重合时(如图1),EF= ;
(2)当直线EF过点D时(如图2),点A的对应点A′落在线段BC上,求线段EF的长;
(3)如图3,点A的对应点A′落在线段BC上,E点在线段AB上,同时F点也在线段AD上,则A′在BC上的运动距离是 ;
0.答案解析
1.A
2.B
3.C
4.A
5.C
6.D
7.答案为:D
8.答案为:A.
解:连接HF,设直线MH与AD边的交点为P,如图:
由折叠可知点P、H、F、M四点共线,且PH=MF,
设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2,
∵若正方形EFGH与五边形MCNGF的面积相等
∴由折叠可知正方形EFGH的面积=×正方形ABCD的面积=,
∴正方形EFGH的边长GF==∴HF=GF=
∴MF=PH==a∴=a÷=
9.B
10.C
11.答案为:-8.
12.
13.答案为:2、7或8.
14.答案为:(1、0) ;
15.答案为:.
16.答案为:;
17.答案为:②③.
解:如图1,∵PM∥CN,∴∠PMN=∠MNC,
∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,
∵NC=NP,∴PM=CN,
∵MP∥CN,∴四边形CNPM是平行四边形,
∵CN=NP,∴四边形CNPM是菱形,故②正确;
∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,
∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,
∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;
点P与点A重合时,如图2,设BN=x,则AN=NC=8﹣x,
在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,
∴CN=8﹣3=5,AC=,∴,
∴,∴MN=2QN=2.故③正确;
当MN过点D时,如图3,
此时,CN最短,四边形CMPN的面积最小,则S最小为S=,
当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=,
∴4≤S≤5,故④错误.
18.答案为:1.5或3.
19. (1)证明:∵CF平分∠ACD,且MN∥BD,
∴∠ACF=∠FCD=∠CFO.
∴OF=OC,
同理可证:OC=OE,
∴OE=OF.
(2)由(1)知:OF=OC,OC=OE,
∴∠OCF=∠OFC,∠OCE=∠OEC.
∴∠OCF+∠OCE=∠OFC+∠OEC,
而∠OCF+∠OCE+∠OFC+∠OEC=180°,
∴∠ECF=∠OCF+∠OCE=90°,∴EF=13.
∴OC=0.5EF=6.5.
(3)当点O移动到AC中点时,四边形AECF为矩形.
理由:由(1)知OE=OF,当点O移动到AC中点时有OA=OC,
∴四边形AECF为平行四边形.
又∵∠ECF=90°,
∴四边形AECF为矩形.
20.解:(1)当y=0时, x+1=0,解得x=﹣2,则A(﹣2,0),
当x=0时,y=x+1=1,则B(0,1);
(2)AB==,当AP=AB时,P点坐标为(﹣,0)或(,0);
当BP=BA时,P点坐标为(2,0);
当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,
设P(t,0),则OA=t+2,OB=t+2,
在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P点坐标为(﹣,0);
(3)如图2,设D(x, x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,
∴•2•2+•2•x=4,解得x=2,此时D点坐标为(2,2);
当x<0时,∵S△BCD﹣S△ABC=S△ACD,
∴•2•(﹣x)﹣•2•2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),
综上所述,D点坐标为(2,2)或(﹣6,﹣2).
故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2).
21.解:(1)AC+CE=+;
(2)当A、C、E三点共线时,AC+CE的值最小;
(3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,
连接AE交BD于点C,设BC=x,则AE的长即为代数+的最小值.
过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,
则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE===13,
即+的最小值为13.
故代数式+的最小值为13.
22.
相关试卷
这是一份中考数学总复习全等的动点动点问题难点解析与训练,共5页。试卷主要包含了友情提醒等内容,欢迎下载使用。
这是一份【全套】中考卷数学复习专题(知识梳理+含答案)-动点问题专题训练,共14页。
这是一份初中数学中考复习 专题15动点综合问题(解析版),共150页。