|试卷下载
终身会员
搜索
    上传资料 赚现金
    高考数学一轮复习 第八章 第5节 第2课时 试卷
    立即下载
    加入资料篮
    高考数学一轮复习 第八章 第5节 第2课时 试卷01
    高考数学一轮复习 第八章 第5节 第2课时 试卷02
    高考数学一轮复习 第八章 第5节 第2课时 试卷03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习 第八章 第5节 第2课时

    展开
    这是一份高考数学一轮复习 第八章 第5节 第2课时,共18页。

    考点一 中点弦及弦长问题 多维探究
    角度1 中点弦问题
    【例1-1】 已知椭圆eq \f(x2,2)+y2=1,
    (1)过A(2,1)的直线l与椭圆相交,求l被截得的弦的中点轨迹方程;
    (2)求过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),\f(1,2)))且被P点平分的弦所在直线的方程.
    解 (1)设弦的端点为P(x1,y1),Q(x2,y2),其中点是M(x,y),则x2+x1=2x,y2+y1=2y,由于点P,Q在椭圆上,则有:
    eq \b\lc\{(\a\vs4\al\c1(\f(xeq \\al(2,1),2)+yeq \\al(2,1)=1,①,\f(xeq \\al(2,2),2)+yeq \\al(2,2)=1,②))
    ①-②得eq \f(y2-y1,x2-x1)=-eq \f(x2+x1,2(y2+y1))=-eq \f(x,2y),
    所以-eq \f(x,2y)=eq \f(y-1,x-2),
    化简得x2-2x+2y2-2y=0(包含在椭圆eq \f(x2,2)+y2=1内部的部分).
    (2)由(1)可得弦所在直线的斜率为k=-eq \f(x,2y)=-eq \f(1,2),
    因此所求直线方程是y-eq \f(1,2)=-eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,2))),化简得2x+4y-3=0.
    规律方法 弦及弦中点问题的解决方法
    (1)根与系数的关系:直线与椭圆方程联立、消元,利用根与系数关系表示中点;
    (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率.
    角度2 弦长问题
    【例1-2】 (2019·北京朝阳区模拟)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,且点F1到椭圆C上任意一点的最大距离为3,椭圆C的离心率为eq \f(1,2).
    (1)求椭圆C的标准方程;
    (2)是否存在斜率为-1的直线l与以线段F1F2为直径的圆相交于A,B两点,与椭圆相交于C,D,且eq \f(|CD|,|AB|)=eq \f(8\r(3),7)?若存在,求出直线l的方程;若不存在,说明理由.
    解 (1)根据题意,设F1,F2的坐标分别为(-c,0),(c,0),
    由题意可得eq \b\lc\{(\a\vs4\al\c1(a+c=3,,\f(c,a)=\f(1,2),))
    解得a=2,c=1,则b2=a2-c2=3,
    故椭圆C的标准方程为eq \f(x2,4)+eq \f(y2,3)=1.
    (2)假设存在斜率为-1的直线l,设为y=-x+m,
    由(1)知F1,F2的坐标分别为(-1,0),(1,0),
    所以以线段F1F2为直径的圆为x2+y2=1,
    由题意知圆心(0,0)到直线l的距离d=eq \f(|-m|,\r(2))<1,
    得|m||AB|=2eq \r(1-d2)=2eq \r(1-\f(m2,2))=eq \r(2)×eq \r(2-m2),
    联立得eq \b\lc\{(\a\vs4\al\c1(\f(x2,4)+\f(y2,3)=1,,y=-x+m,))消去y,得7x2-8mx+4m2-12=0,
    由题意得Δ=(-8m)2-4×7(4m2-12)=336-48m2=48(7-m2)>0,解得m2<7,
    设C(x1,y1),D(x2,y2),
    则x1+x2=eq \f(8m,7),x1x2=eq \f(4m2-12,7),
    |CD|=eq \r(2)|x1-x2|=eq \r(2)×eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(\f(8m,7)))\s\up12(2)-4×\f(4m2-12,7))
    =eq \r(2)×eq \r(\f(336-48m2,49))=eq \f(4\r(6),7)×eq \r(7-m2)=eq \f(8\r(3),7)|AB|
    =eq \f(8\r(3),7)×eq \r(2)×eq \r(2-m2),
    解得m2=eq \f(1,3)<7,得m=±eq \f(\r(3),3).
    即存在符合条件的直线l,其方程为y=-x±eq \f(\r(3),3).
    规律方法 1.解决直线与椭圆相交的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.
    2.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),
    则|AB|=eq \r((1+k2)[(x1+x2)2-4x1x2])
    = eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(1+\f(1,k2)))[(y1+y2)2-4y1y2])(k为直线斜率).
    【训练1】 (1)(一题多解)已知斜率为2的直线经过椭圆eq \f(x2,5)+eq \f(y2,4)=1的右焦点F1,与椭圆相交于A,B两点,则弦AB的长为________.
    (2)(一题多解)(2019·广东五校调研)若椭圆的中心在原点,一个焦点为(0,2),直线y=3x+7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为( )
    A.eq \f(x2,12)+eq \f(y2,20)=1 B.eq \f(x2,4)+eq \f(y2,12)=1
    C.eq \f(x2,12)+eq \f(y2,8)=1 D.eq \f(x2,8)+eq \f(y2,12)=1
    解析 (1)法一 由题意知,椭圆的右焦点F1的坐标为(1,0),直线AB的方程为y=2(x-1),
    由eq \b\lc\{(\a\vs4\al\c1(y=2(x-1),,\f(x2,5)+\f(y2,4)=1))消去y,得3x2-5x=0,
    故得A(0,-2),Beq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,3),\f(4,3))),则
    |AB|=eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(0-\f(5,3)))\s\up12(2)+\b\lc\(\rc\)(\a\vs4\al\c1(-2-\f(4,3)))\s\up12(2))=eq \f(5\r(5),3).
    法二 由题意知,椭圆的右焦点F1的坐标为(1,0),
    直线AB的方程为y=2(x-1),
    由eq \b\lc\{(\a\vs4\al\c1(y=2(x-1),,\f(x2,5)+\f(y2,4)=1,))消去y得3x2-5x=0,
    设A(x1,y1),B(x2,y2),
    则x1+x2=eq \f(5,3),x1x2=0,
    则|AB|=eq \r((x1-x2)2+(y1-y2)2)
    =eq \r((1+k2)[(x1+x2)2-4x1x2])
    =eq \r((1+22)\b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(\f(5,3)))\s\up12(2)-4×0)))=eq \f(5\r(5),3).
    (2)法一 ∵椭圆的中心在原点,一个焦点为(0,2),
    ∴设椭圆方程为eq \f(y2,b2+4)+eq \f(x2,b2)=1(b>0),
    由eq \b\lc\{(\a\vs4\al\c1(\f(y2,b2+4)+\f(x2,b2)=1,,y=3x+7))消去x,
    得(10b2+4)y2-14(b2+4)y-9b4+13b2+196=0,
    设直线y=3x+7与椭圆相交所得弦的端点分别为A(x1,y1),B(x2,y2),
    由题意知eq \f(y1+y2,2)=1,
    ∴y1+y2=eq \f(14(b2+4),10b2+4)=2,解得b2=8.
    ∴所求椭圆方程为eq \f(x2,8)+eq \f(y2,12)=1.
    法二 ∵椭圆的中心在原点,一个焦点为(0,2),
    ∴设椭圆的方程为eq \f(y2,b2+4)+eq \f(x2,b2)=1(b>0).
    设直线y=3x+7与椭圆相交所得弦的端点分别为A(x1,y1),B(x2,y2),则
    eq \b\lc\{(\a\vs4\al\c1(\f(yeq \\al(2,1),b2+4)+\f(xeq \\al(2,1),b2)=1, ①,\f(yeq \\al(2,2),b2+4)+\f(xeq \\al(2,2),b2)=1, ②))
    ①-②得eq \f((y1-y2)(y1+y2),b2+4)+eq \f((x1-x2)(x1+x2),b2)=0,
    即eq \f(y1-y2,x1-x2)·eq \f(y1+y2,x1+x2)=-eq \f(b2+4,b2),
    又∵弦AB的中点的纵坐标为1,故横坐标为-2,
    k=eq \f(y1-y2,x1-x2)=3,代入上式得3×eq \f(2×1,2×(-2))=-eq \f(b2+4,b2),解得b2=8,故所求的椭圆方程为eq \f(x2,8)+eq \f(y2,12)=1.
    答案 (1)eq \f(5\r(5),3) (2)D
    考点二 最值与范围问题 易错警示
    【例2】 (2019·天津和平区质检)已知P点坐标为(0,-2),点A,B分别为椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右顶点,直线BP交E于点Q,△ABP是等腰直角三角形,且eq \(PQ,\s\up6(→))=eq \f(3,2)eq \(QB,\s\up6(→)).
    (1)求椭圆E的方程;
    (2)设过点P的动直线l与E相交于M,N两点,当坐标原点O位于以MN为直径的圆外时,求直线l斜率的取值范围.
    解 (1)由△ABP是等腰直角三角形,得a=2,B(2,0).
    设Q(x0,y0),则由eq \(PQ,\s\up6(→))=eq \f(3,2)eq \(QB,\s\up6(→)),得eq \b\lc\{(\a\vs4\al\c1(x0=\f(6,5),,y0=-\f(4,5),))
    代入椭圆方程得b2=1,
    所以椭圆E的方程为eq \f(x2,4)+y2=1.
    (2)依题意得,直线l的斜率存在,方程设为y=kx-2.
    联立eq \b\lc\{(\a\vs4\al\c1(y=kx-2,,\f(x2,4)+y2=1,))
    消去y并整理得(1+4k2)x2-16kx+12=0.(*)
    因直线l与E有两个交点,即方程(*)有不等的两实根,
    故Δ=(-16k)2-48(1+4k2)>0,解得k2>eq \f(3,4).
    设M(x1,y1),N(x2,y2),
    由根与系数的关系得eq \b\lc\{(\a\vs4\al\c1(x1+x2=\f(16k,1+4k2),,x1x2=\f(12,1+4k2),))
    因坐标原点O位于以MN为直径的圆外,
    所以eq \(OM,\s\up6(→))·eq \(ON,\s\up6(→))>0,即x1x2+y1y2>0,
    又由x1x2+y1y2=x1x2+(kx1-2)(kx2-2)
    =(1+k2)x1x2-2k(x1+x2)+4
    =(1+k2)·eq \f(12,1+4k2)-2k·eq \f(16k,1+4k2)+4>0,
    解得k2<4,综上可得eq \f(3,4)则eq \f(\r(3),2)则满足条件的斜率k的取值范围为eq \b\lc\(\rc\)(\a\vs4\al\c1(-2,-\f(\r(3),2)))∪eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2),2)).
    规律方法 最值与范围问题的解题思路
    1.构造关于所求量的函数,通过求函数的值域来获得问题的解.
    2.构造关于所求量的不等式,通过解不等式来获得问题的解.在解题过程中,一定要深刻挖掘题目中的隐含条件,如判别式大于零等.
    易错警示 (1)设直线方程时,应注意讨论斜率不存在的情况.
    (2)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.
    【训练2】 已知P(x0,y0)是椭圆C:eq \f(x2,4)+y2=1上的一点,F1,F2是C的两个焦点,若eq \(PF1,\s\up6(→))·eq \(PF2,\s\up6(→))<0,则x0的取值范围是( )
    A.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2\r(6),3),\f(2\r(6),3))) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2\r(3),3),\f(2\r(3),3)))
    C.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(3),3),\f(\r(3),3))) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(6),3),\f(\r(6),3)))
    解析 由题意可知F1(-eq \r(3),0),F2(eq \r(3),0),则eq \(PF1,\s\up6(→))·eq \(PF2,\s\up6(→))=(x0+eq \r(3))(x0-eq \r(3))+yeq \\al(2,0)=xeq \\al(2,0)+yeq \\al(2,0)-3<0.因为点P在椭圆上,所以yeq \\al(2,0)=1-eq \f(xeq \\al(2,0),4).所以xeq \\al(2,0)+eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(xeq \\al(2,0),4)))-3<0,解得-eq \f(2\r(6),3)答案 A
    [思维升华]
    解决中点弦、弦长及最值与范围问题一般利用“设而不求”的思想,通过根与系数的关系构建方程求解参数、计算弦长、表达函数.
    [易错防范]
    1.涉及直线的斜率时,要考虑直线斜率不存在的情况是否符合题意.
    2.求某几何量的最值或范围要考虑其中变量的取值范围.
    数学运算——高考解析几何问题中的“设而不求”
    1.数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程,解析几何正是利用数学运算解决几何问题的一门科学.
    2.“设而不求”是简化运算的一种重要手段,它的精彩在于设而不求,化繁为简.解题过程中,巧妙设点,避免解方程组,常见类型有:(1)灵活应用“点、线的几何性质”解题;(2)根据题意,整体消参或整体代入等.
    类型1 巧妙运用抛物线定义得出与根与系数关系的联系,从而设而不求
    【例1】 (2017·山东卷)在平面直角坐标系xOy中,双曲线eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.
    解析 法一 设A(xA,yA),B(xB,yB),由抛物线定义可得|AF|+|BF|=yA+eq \f(p,2)+yB+eq \f(p,2)=4×eq \f(p,2)⇒yA+yB=p,
    由eq \b\lc\{(\a\vs4\al\c1(\f(x2,a2)-\f(y2,b2)=1,,x2=2py,))可得a2y2-2pb2y+a2b2=0,
    所以yA+yB=eq \f(2pb2,a2)=p,解得a=eq \r(2)b,故该双曲线的渐近线方程为y=±eq \f(\r(2),2)x.
    法二 (点差法)设A(x1,y1),B(x2,y2),由抛物线的定义可知|AF|=y1+eq \f(p,2),|BF|=y2+eq \f(p,2),|OF|=eq \f(p,2),由|AF|+|BF|=y1+eq \f(p,2)+y2+eq \f(p,2)=y1+y2+p=4|OF|=2p,得y1+y2=p.
    易知直线AB的斜率kAB=eq \f(y2-y1,x2-x1)=eq \f(\f(xeq \\al(2,2),2p)-\f(xeq \\al(2,1),2p),x2-x1)=eq \f(x2+x1,2p).
    由eq \b\lc\{(\a\vs4\al\c1(\f(xeq \\al(2,1),a2)-\f(yeq \\al(2,1),b2)=1,,\f(xeq \\al(2,2),a2)-\f(yeq \\al(2,2),b2)=1,))得kAB=eq \f(y2-y1,x2-x1)=eq \f(b2(x1+x2),a2(y1+y2))=eq \f(b2,a2)·eq \f(x1+x2,p),则eq \f(b2,a2)·eq \f(x1+x2,p)=eq \f(x2+x1,2p),所以eq \f(b2,a2)=eq \f(1,2)⇒eq \f(b,a)=eq \f(\r(2),2),所以双曲线的渐近线方程为y=±eq \f(\r(2),2)x.
    答案 y=±eq \f(\r(2),2)x
    类型2 中点弦或对称问题,可以利用“点差法”,“点差法”实质上是“设而不求”的一种方法
    【例2】 (1)△ABC的三个顶点都在抛物线E:y2=2x上,其中A(2,2),△ABC的重心G是抛物线E的焦点,则BC所在直线的方程为________________.
    (2)抛物线E:y2=2x上存在两点关于直线y=k(x-2)对称,则k的取值范围是________.
    解析 (1)设B(x1,y1),C(x2,y2),边BC的中点为M(x0,y0),易知Geq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),0)),则eq \b\lc\{(\a\vs4\al\c1(\f(x1+x2+2,3)=\f(1,2),,\f(y1+y2+2,3)=0,))
    从而eq \b\lc\{(\a\vs4\al\c1(x0=\f(x1+x2,2)=-\f(1,4),,y0=\f(y1+y2,2)=-1,))即Meq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,4),-1)),
    又yeq \\al(2,1)=2x1,yeq \\al(2,2)=2x2,两式相减得(y1+y2)(y1-y2)=2(x1-x2),则直线BC的斜率kBC=eq \f(y1-y2,x1-x2)=eq \f(2,y1+y2)=eq \f(2,2y0)=eq \f(1,y0)=-1,故直线BC的方程为y-(-1)=-eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(1,4))),即4x+4y+5=0.
    (2)当k=0时,显然成立.
    当k≠0时,设两对称点为B(x1,y1),C(x2,y2),BC的中点为M(x0,y0),由yeq \\al(2,1)=2x1,yeq \\al(2,2)=2x2,两式相减得(y1+y2)(y1-y2)=2(x1-x2),则直线BC的斜率kBC= eq \f(y1-y2,x1-x2)=eq \f(2,y1+y2)=eq \f(2,2y0)=eq \f(1,y0),由对称性知kBC=-eq \f(1,k),点M在直线y=k(x-2)上,所以y0=-k,y0=k(x0-2),所以x0=1.由点M在抛物线内,得yeq \\al(2,0)<2x0,即(-k)2<2,
    所以-eq \r(2)综上,k的取值范围为(-eq \r(2),eq \r(2)).
    答案 (1)x+y+eq \f(5,4)=0 (2)(-eq \r(2),eq \r(2))
    类型3 中点弦或对称问题,可以利用“点差法”,但不要忘记验证Δ>0
    【例3】 人教A版教材《选修2-1》第62页习题2.3 B组第4题:已知双曲线x2-eq \f(y2,2)=1,过点P(1,1)能否作一条直线l与双曲线交于A,B两点,且点P是线段AB的中点?
    解 假设存在直线l与双曲线交于A,B两点,且点P是线段AB的中点.
    设A(x1,y1),B(x2,y2),易知x1≠x2,由eq \b\lc\{(\a\vs4\al\c1(xeq \\al(2,1)-\f(yeq \\al(2,1),2)=1,,xeq \\al(2,2)-\f(yeq \\al(2,2),2)=1,))
    两式相减得(x1+x2)(x1-x2)-eq \f((y1+y2)(y1-y2),2)=0,
    又eq \f(x1+x2,2)=1,eq \f(y1+y2,2)=1,所以2(x1-x2)-(y1-y2)=0,所以kAB=eq \f(y1-y2,x1-x2)=2,
    故直线l的方程为y-1=2(x-1),即y=2x-1.
    由eq \b\lc\{(\a\vs4\al\c1(y=2x-1,,x2-\f(y2,2)=1,))消去y得2x2-4x+3=0,
    因为Δ=16-24=-8<0,方程无解,故不存在一条直线l与双曲线交于A,B两点,且点P是线段AB的中点.
    类型4 求解直线与圆锥曲线的相关问题时,若两条直线互相垂直或两直线斜率有明确等量关系,可用“替代法”,“替代法”的实质是设而不求
    【例4】 (2017·全国Ⅰ卷改编)已知F为抛物线C:y2=2x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为________.
    解析 法一 由题意知,直线l1,l2的斜率都存在且不为0,Feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),0)),设l1:x=ty+eq \f(1,2),则直线l1的斜率为eq \f(1,t),联立方程得eq \b\lc\{(\a\vs4\al\c1(y2=2x,,x=ty+\f(1,2),))消去x得y2-2ty-1=0.
    设A(x1,y1),B(x2,y2),则y1+y2=2t,y1y2=-1.
    所以|AB|=eq \r(t2+1)|y1-y2|=eq \r(t2+1)eq \r((y1+y2)2-4y1y2)=eq \r(t2+1)eq \r(4t2+4)=2t2+2,
    同理得,用eq \f(1,t)替换t可得|DE|=eq \f(2,t2)+2,所以|AB|+|DE|=2eq \b\lc\(\rc\)(\a\vs4\al\c1(t2+\f(1,t2)))+4≥4+4=8,当且仅当t2=eq \f(1,t2),即t=±1时等号成立,故|AB|+|DE|的最小值为8.
    法二 由题意知,直线l1,l2的斜率都存在且不为0,Feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),0)),不妨设l1的斜率为k,则l1:y=keq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,2))),l2:y=-eq \f(1,k)eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,2))).
    由eq \b\lc\{(\a\vs4\al\c1(y2=2x,,y=k\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,2))),))消去y得k2x2-(k2+2)x+eq \f(k2,4)=0,
    设A(x1,y1),B(x2,y2),则x1+x2=1+eq \f(2,k2).
    由抛物线的定义知,
    |AB|=x1+x2+1=1+eq \f(2,k2)+1=2+eq \f(2,k2).
    同理可得,用-eq \f(1,k)替换|AB|中k,可得|DE|=2+2k2,所以|AB|+|DE|=2+eq \f(2,k2)+2+2k2=4+eq \f(2,k2)+2k2≥4+4=8,当且仅当eq \f(2,k2)=2k2,即k=±1时等号成立,故|AB|+|DE|的最小值为8.
    答案 8
    基础巩固题组
    (建议用时:40分钟)
    一、选择题
    1.(基础题供选用)直线y=x+2与椭圆eq \f(x2,m)+eq \f(y2,3)=1有两个公共点,则m的取值范围是( )
    A.(1,+∞) B.(1,3)∪(3,+∞)
    C.(3,+∞) D.(0,3)∪(3,+∞)
    解析 由eq \b\lc\{(\a\vs4\al\c1(y=x+2,,\f(x2,m)+\f(y2,3)=1,))得(m+3)x2+4mx+m=0.
    由Δ>0且m≠3及m>0得m>1且m≠3.
    答案 B
    2.设直线y=kx与椭圆eq \f(x2,4)+eq \f(y2,3)=1相交于A,B两点,分别过A,B两点向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于( )
    A.±eq \f(3,2) B.±eq \f(2,3) C.±eq \f(1,2) D.±2
    解析 由题意可知,点A与点B的横坐标即为焦点的横坐标,又c=1,当k>0时,不妨设A,B两点的坐标分别为(-1,y1),(1,y2),代入椭圆方程得y1=-eq \f(3,2),y2=eq \f(3,2),解得k=eq \f(3,2);同理可得当k<0时k=-eq \f(3,2).
    答案 A
    3.(2019·长春二检)椭圆4x2+9y2=144内有一点P(3,2),则以P为中点的弦所在直线的斜率为( )
    A.-eq \f(2,3) B.-eq \f(3,2) C.-eq \f(4,9) D.-eq \f(9,4)
    解析 设以P为中点的弦所在的直线与椭圆交于点A(x1,y1),B(x2,y2),斜率为k,则4xeq \\al(2,1)+9yeq \\al(2,1)=144,4xeq \\al(2,2)+9yeq \\al(2,2)=144,两式相减得4(x1+x2)(x1-x2)+9(y1+y2)(y1-y2)=0,又x1+x2=6,y1+y2=4,eq \f(y1-y2,x1-x2)=k,代入解得k=-eq \f(2,3).
    答案 A
    4.(2019·青岛调研)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)及点B(0,a),过点B与椭圆相切的直线交x轴的负半轴于点A,F为椭圆的右焦点,则∠ABF=( )
    A.60° B.90° C.120° D.150°
    解析 由题意知,切线的斜率存在,设切线方程y=kx+a(k>0),与椭圆方程联立eq \b\lc\{(\a\vs4\al\c1(y=kx+a,,\f(x2,a2)+\f(y2,b2)=1,))消去y整理得(b2+a2k2)x2+2ka3x+a4-a2b2=0,
    由Δ=(2ka3)2-4(b2+a2k2)(a4-a2b2)=0,
    得k=eq \f(c,a),从而y=eq \f(c,a)x+a交x轴于点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(a2,c),0)),
    又F(c,0),易知eq \(BA,\s\up6(→))·eq \(BF,\s\up6(→))=0,故∠ABF=90°.
    答案 B
    5.斜率为1的直线l与椭圆eq \f(x2,4)+y2=1相交于A,B两点,则|AB|的最大值为( )
    A.2 B.eq \f(4\r(5),5) C.eq \f(4\r(10),5) D.eq \f(8\r(10),5)
    解析 设直线l的方程为y=x+t,代入eq \f(x2,4)+y2=1,消去y得eq \f(5,4)x2+2tx+t2-1=0,由题意知Δ=(2t)2-5(t2-1)>0即t2<5,设A(x1,y1),B(x2,y2),则x1+x2=-eq \f(8t,5),x1x2=eq \f(4(t2-1),5),|AB|=eq \r((1+1)[(x1+x2)2-4x1x2])=eq \f(4\r(2),5)eq \r(5-t2)≤eq \f(4\r(10),5)(当且仅当t=0时取等号).
    答案 C
    二、填空题
    6.已知椭圆eq \f(y2,a2)+eq \f(x2,b2)=1(a>b>0)的右顶点为A(1,0),过其焦点且垂直于长轴的弦长为1,则椭圆方程为________________________.
    解析 因为椭圆eq \f(y2,a2)+eq \f(x2,b2)=1的右顶点为A(1,0),所以b=1,焦点坐标为(0,c),因为过焦点且垂直于长轴的弦长为1,所以eq \f(2b2,a)=1,a=2,所以椭圆方程为eq \f(y2,4)+x2=1.
    答案 eq \f(y2,4)+x2=1
    7.(2019·河南八校联考)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右顶点为A,经过原点的直线l交椭圆C于P,Q两点,若|PQ|=a,AP⊥PQ,则椭圆C的离心率为________.
    解析 不妨设点P在第一象限,O为坐标原点,由对称性可得|OP|=eq \f(|PQ|,2)=eq \f(a,2),因为AP⊥PQ,所以在Rt△POA中,cs ∠POA=eq \f(|OP|,|OA|)=eq \f(1,2),故∠POA=60°,易得Peq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a,4),\f(\r(3)a,4))),代入椭圆方程得eq \f(1,16)+eq \f(3a2,16b2)=1,故a2=5b2=5(a2-c2),所以椭圆C的离心率e=eq \f(2\r(5),5).
    答案 eq \f(2\r(5),5)
    8.已知椭圆的方程是x2+2y2-4=0,则以M(1,1)为中点的弦所在直线方程是________.
    解析 由题意知,以M(1,1)为中点的弦所在直线的斜率存在,设其方程为y=kx+b,
    则有k+b=1,即b=1-k,即y=kx+(1-k),
    联立方程组eq \b\lc\{(\a\vs4\al\c1(x2+2y2-4=0,,y=kx+(1-k),))
    则有(1+2k2)x2+(4k-4k2)x+(2k2-4k-2)=0,
    所以eq \f(x1+x2,2)=eq \f(1,2)·eq \f(4k2-4k,1+2k2)=1,
    解得k=-eq \f(1,2)(满足Δ>0),故b=eq \f(3,2),
    所以y=-eq \f(1,2)x+eq \f(3,2),即x+2y-3=0.
    答案 x+2y-3=0
    三、解答题
    9.(2017·北京卷)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为eq \f(\r(3),2).
    (1)求椭圆C的方程;
    (2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4∶5.
    (1)解 设椭圆C的方程为eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0).
    由题意得eq \b\lc\{(\a\vs4\al\c1(a=2,,\f(c,a)=\f(\r(3),2),))解得c=eq \r(3).所以b2=a2-c2=1.
    所以椭圆C的方程为eq \f(x2,4)+y2=1.
    (2)证明 设M(m,n),则D(m,0),N(m,-n).
    由题设知m≠±2,且n≠0.
    直线AM的斜率kAM=eq \f(n,m+2),
    故直线DE的斜率kDE=-eq \f(m+2,n).
    所以直线DE的方程为y=-eq \f(m+2,n)(x-m).
    直线BN的方程为y=eq \f(n,2-m)(x-2).
    联立eq \b\lc\{(\a\vs4\al\c1(y=-\f(m+2,n)(x-m),,y=\f(n,2-m)(x-2),))
    解得点E的纵坐标yE=-eq \f(n(4-m2),4-m2+n2).
    由点M在椭圆C上,得4-m2=4n2,
    所以yE=-eq \f(4,5)n.
    又S△BDE=eq \f(1,2)|BD|·|yE|=eq \f(2,5)|BD|·|n|,
    S△BDN=eq \f(1,2)|BD|·|n|.
    所以△BDE与△BDN的面积之比为4∶5.
    10.(2019·上海静安区模拟)已知A,B分别为椭圆C:eq \f(y2,a2)+eq \f(x2,b2)=1(a>b>0)在x轴正半轴、y轴正半轴上的顶点,原点O到直线AB的距离为eq \f(2\r(21),7),且|AB|=eq \r(7).
    (1)求椭圆C的离心率;
    (2)直线l:y=kx+m与圆x2+y2=2相切,并与椭圆C交于M,N两点,若|MN|=eq \f(12\r(2),7),求k的值.
    解 (1)由题设知,A(b,0),B(0,a),直线AB的方程为eq \f(x,b)+eq \f(y,a)=1,又|AB|=eq \r(a2+b2)=eq \r(7),eq \f(ab,\r(a2+b2))=eq \f(2\r(21),7),a>b>0,
    计算得出a=2,b=eq \r(3),则椭圆C的离心率为e=eq \r(1-\f(b2,a2))=eq \f(1,2).
    (2)由(1)知椭圆方程为eq \f(y2,4)+eq \f(x2,3)=1,设M(x1,y1),N(x2,y2),则eq \b\lc\{(\a\vs4\al\c1(\f(y2,4)+\f(x2,3)=1,,y=kx+m))消去y得,(3k2+4)x2+6kmx+3m2-12=0,直线l与椭圆相交,则Δ>0,
    即48(3k2-m2+4)>0,
    且x1+x2=-eq \f(6km,3k2+4),x1x2=eq \f(3m2-12,3k2+4).
    又直线l与圆x2+y2=2相切,
    则eq \f(|m|,\r(k2+1))=eq \r(2),即m2=2(k2+1).
    而|MN|=eq \r(1+k2)·eq \r((x1+x2)2-4x1x2)
    =eq \f(\r(1+k2)·\r(48(3k2-m2+4)),3k2+4)
    =eq \f(\r(1+k2)·\r(48(k2+2)),3k2+4)=eq \f(4\r(3)·\r(k4+3k2+2),3k2+4),
    又|MN|=eq \f(12\r(2),7),所以eq \f(4\r(3)·\r(k4+3k2+2),3k2+4)=eq \f(12\r(2),7),
    即5k4-3k2-2=0,解得k=±1,且满足Δ>0,故k的值为±1.
    能力提升题组
    (建议用时:20分钟)
    11.(2019·北京东城区调研)已知圆M:(x-2)2+y2=1经过椭圆C:eq \f(x2,m)+eq \f(y2,3)=1(m>3)的一个焦点,圆M与椭圆C的公共点为A,B,点P为圆M上一动点,则P到直线AB的距离的最大值为( )
    A.2eq \r(10)-5 B.2eq \r(10)-4
    C.4eq \r(10)-11 D.4eq \r(10)-10
    解析 易知圆M与x轴的交点为(1,0),(3,0),∴m-3=1或m-3=9,则m=4或m=12.当m=12时,圆M与椭圆C无交点,舍去.所以m=4.联立eq \b\lc\{(\a\vs4\al\c1((x-2)2+y2=1,,\f(x2,4)+\f(y2,3)=1,))得x2-16x+24=0.又x≤2,所以x=8-2eq \r(10).故点P到直线AB距离的最大值为3-(8-2eq \r(10))=2eq \r(10)-5.
    答案 A
    12.(2019·广州调研)在平面直角坐标系xOy中,直线x+eq \r(2)y-2eq \r(2)=0与椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)相切,且椭圆C的右焦点F(c,0)关于直线l:y=eq \f(c,b)x的对称点E在椭圆C上,则△OEF的面积为( )
    A.eq \f(1,2) B.eq \f(\r(3),2) C.1 D.2
    解析 联立方程可得eq \b\lc\{(\a\vs4\al\c1(x+\r(2)y-2\r(2)=0,,\f(x2,a2)+\f(y2,b2)=1,))消去x,化简得(a2+2b2)y2-8b2y+b2(8-a2)=0,由Δ=0得2b2+a2-8=0.设F′为椭圆C的左焦点,连接F′E,易知F′E∥l,所以F′E⊥EF,又点F到直线l的距离d=eq \f(c2,\r(c2+b2))=eq \f(c2,a),所以|EF|=eq \f(2c2,a),|F′E|=2a-|EF|=eq \f(2b2,a),在Rt△F′EF中,|F′E|2+|EF|2=|F′F|2,化简得2b2=a2,代入2b2+a2-8=0得b2=2,a=2,所以|EF|=|F′E|=2,所以S△OEF=eq \f(1,2)S△F′EF=1.
    答案 C
    13.已知直线l:y=kx+2过椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若L≥eq \f(4\r(5),5),则椭圆离心率e的取值范围是________.
    解析 依题意,知b=2,kc=2.
    设圆心到直线l的距离为d,则L=2eq \r(4-d2)≥eq \f(4\r(5),5),
    解得d2≤eq \f(16,5).又因为d=eq \f(2,\r(1+k2)),所以eq \f(1,1+k2)≤eq \f(4,5),
    解得k2≥eq \f(1,4).
    于是e2=eq \f(c2,a2)=eq \f(c2,b2+c2)=eq \f(1,1+k2),所以0<e2≤eq \f(4,5),又由0答案 eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(2\r(5),5)))
    14.在平面直角坐标系xOy中,已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)过点P(2,1),且离心率e=eq \f(\r(3),2).
    (1)求椭圆C的方程;
    (2)直线l的斜率为eq \f(1,2),直线l与椭圆C交于A,B两点,求△PAB的面积的最大值.
    解 (1)因为e2=eq \f(c2,a2)=eq \f(a2-b2,a2)=eq \f(3,4),所以a2=4b2.
    又椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)过点P(2,1),
    所以eq \f(4,a2)+eq \f(1,b2)=1.所以a2=8,b2=2.
    故所求椭圆方程为eq \f(x2,8)+eq \f(y2,2)=1.
    (2)设l的方程为y=eq \f(1,2)x+m,点A(x1,y1),B(x2,y2),联立eq \b\lc\{(\a\vs4\al\c1(y=\f(1,2)x+m,,\f(x2,8)+\f(y2,2)=1))消去y整理得x2+2mx+2m2-4=0.
    所以x1+x2=-2m,x1x2=2m2-4.
    又直线l与椭圆相交,所以Δ=4m2-8m2+16>0,解得|m|<2.
    则|AB|=eq \r(1+\f(1,4))×eq \r((x1+x2)2-4x1x2)=eq \r(5(4-m2)).
    点P到直线l的距离d=eq \f(|m|,\r(1+\f(1,4)))=eq \f(2|m|,\r(5)).
    所以S△PAB=eq \f(1,2)d|AB|=eq \f(1,2)×eq \f(2|m|,\r(5))×eq \r(5(4-m2))=eq \r(m2(4-m2))≤eq \f(m2+4-m2,2)=2.
    当且仅当m2=2,即m=±eq \r(2)时,△PAB的面积取得最大值为2.
    新高考创新预测
    15.(思维创新)椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0),直线l1:y=-eq \f(1,2)x,直线l2:y=eq \f(1,2)x,P为椭圆上任意一点,过P作PM∥l1且与直线l2交于点M,作PN∥l2且与l1交于点N,若|PM|2+|PN|2为定值,则椭圆的离心率为________.
    解析 设|PM|2+|PN|2=t,Meq \b\lc\(\rc\)(\a\vs4\al\c1(x1,\f(1,2)x1)),Neq \b\lc\(\rc\)(\a\vs4\al\c1(x2,-\f(1,2)x2)),P(x,y).因为四边形PMON为平行四边形,
    所以|PM|2+|PN|2=|ON|2+|OM|2=eq \f(5,4)(xeq \\al(2,1)+xeq \\al(2,2))=t.
    因为eq \(OP,\s\up6(→))=eq \(OM,\s\up6(→))+eq \(ON,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(x1+x2,\f(1,2)x1-\f(1,2)x2)),
    所以eq \b\lc\{(\a\vs4\al\c1(x=x1+x2,,y=\f(1,2)x1-\f(1,2)x2,))则x2+4y2=2(xeq \\al(2,1)+xeq \\al(2,2))=eq \f(8,5)t,此方程为椭圆方程,即eq \f(x2,\f(8t,5))+eq \f(y2,\f(2t,5))=1,则椭圆的离心率e=eq \r(\f(\f(8t,5)-\f(2t,5),\f(8t,5)))=eq \f(\r(3),2).
    答案 eq \f(\r(3),2)
    相关试卷

    高考数学一轮复习 第八章 第5节 第1课时: 这是一份高考数学一轮复习 第八章 第5节 第1课时,共17页。试卷主要包含了椭圆的标准方程和几何性质,已知椭圆C,设F1,F2为椭圆C等内容,欢迎下载使用。

    高考数学一轮复习 第八章 第2节两直线的位置关系: 这是一份高考数学一轮复习 第八章 第2节两直线的位置关系,共18页。试卷主要包含了距离公式,已知坐标原点关于直线l1等内容,欢迎下载使用。

    高考数学一轮复习 第八章 第8节 第1课时: 这是一份高考数学一轮复习 第八章 第8节 第1课时,共20页。试卷主要包含了定点的探索与证明问题,求解范围问题的方法,圆锥曲线中常见最值的解题方法,圆锥曲线的弦长,设椭圆C1等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map