终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题18 等腰直角三角形构建三垂直全等问题-2021年中考数学二轮复习经典问题专题训练

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题18 等腰直角三角形构建三垂直全等问题(原卷版)-2021年中考数学二轮复习经典问题专题训练.docx
    • 解析
      专题18 等腰直角三角形构建三垂直全等问题(解析版)-2021年中考数学二轮复习经典问题专题训练.docx
    专题18  等腰直角三角形构建三垂直全等问题(原卷版)-2021年中考数学二轮复习经典问题专题训练第1页
    专题18  等腰直角三角形构建三垂直全等问题(原卷版)-2021年中考数学二轮复习经典问题专题训练第2页
    专题18  等腰直角三角形构建三垂直全等问题(原卷版)-2021年中考数学二轮复习经典问题专题训练第3页
    专题18  等腰直角三角形构建三垂直全等问题(解析版)-2021年中考数学二轮复习经典问题专题训练第1页
    专题18  等腰直角三角形构建三垂直全等问题(解析版)-2021年中考数学二轮复习经典问题专题训练第2页
    专题18  等腰直角三角形构建三垂直全等问题(解析版)-2021年中考数学二轮复习经典问题专题训练第3页
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题18 等腰直角三角形构建三垂直全等问题-2021年中考数学二轮复习经典问题专题训练

    展开

    这是一份专题18 等腰直角三角形构建三垂直全等问题-2021年中考数学二轮复习经典问题专题训练,文件包含专题18等腰直角三角形构建三垂直全等问题原卷版-2021年中考数学二轮复习经典问题专题训练docx、专题18等腰直角三角形构建三垂直全等问题解析版-2021年中考数学二轮复习经典问题专题训练docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
    专题18  等腰直角三角形构建三垂直全等问题规律总结【典例分析】1.(2020·无锡市玉祁初级中学八年级月考)如图,,垂足分别为,则的长(    ).A B C D【答案】A【分析】△CEB△ADC全等,得到BECD相等,CEAD相等,即可得到结论【详解】解:∵BE⊥CEAD⊥CE∴∠E=∠ADC=90°∴∠EBC+∠BCE=90°∴∠BCE+∠ACD=90°∴∠EBC=∠DCA△CEB△ADC中,∴△CEB≌△ADC∴BE=DCCE=AD∵AD=2.5cmDE=1.7cm∴CE=1.7cm∴DC=CE-DE=0.8cm∴BE=0.8cm故选:A【点睛】本题考查垂直性质的运用,直角三角形的性质的运用,全等三角形的性质和判定,证明三角形全等是解题的关键.2.(2020·浙江金华市·八年级期末)如图,在中,的中点,是边上一点,连接,以为直角边作等腰直角三角形,斜边交线段于点,若,则的长为________【答案】3【分析】DG⊥ACGEH⊥ACH,则∠DGM∠MHE90°DG∥BC,由勾股定理得出BC6,证出DG△ABC的中位线,得出DGBC3AGCGAC4,证明△MDG≌△EMHASA),得出MGEH,由三角形面积关系得出DG2EH3,得出MGEH,再证明DGF~∆EHF,从而求出GF,进而即可得出答案.【详解】DG⊥ACGEH⊥ACH,如图所示:∠DGM∠MHE90°DG∥BC∵∠ACB90°AB10AC8∴BC∵DG∥BCDAB的中点,∴DG△ABC的中位线,∴DGBC3AGCGAC4∵△DME是等腰直角三角形,∴∠DME90°DMME∵∠DMG∠GDM∠DMG∠EMH90°∴∠GDM∠EMH△MDG△EMH中, ∴△MDG≌△EMHASA),∴MGEH∵S△MDF2S△MEF∴DG2EH3∴MGEH∵DG∥EH∴∆DGF~∆EHF∵GH=MH-MG=DG-MG=3-=∴GF=×=1∴CF=AC-AG-GF=8-4-1=3故答案是:3【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、相似三角形的判定和性质;添加辅助线,构造三角形全等是解题的关键.3.(2021·江苏连云港市·八年级期末)如图1所示,直线轴负半轴,轴正半轴分别交于两点.1)当时,求直线的解析式;2)在(1)的条件下,如图2所示,设线段延长线上一点,作直线,过两点分别作于点于点,若BN=3,求的长;3)如图3,当取不同的值时,点轴正半轴上运动,分别以为边,点为直角顶点在第一、二象限内作等腰直角和等腰直角,连接轴于点,当点轴正半轴上运动时,试猜想的面积是否改变;若不改变,请求出其值;若改变,请说明理由.4)如图3,当取不同的值时,点轴正半轴上运动,以为边,点为直角顶点,在第二象限作等腰直角,则动点在直线______上运动.(直接写出直线的解析式)【答案】1yx5;(27;(3的面积不改变,;(4y=5-x【分析】1)令y0可求得x5,从而可求得点A的坐标,令x0y5m,由OAOB可知点B的纵坐标为5,从而可求得m的值;2)依据AAS证明△AMO≌△ONB,由全等三角形的性质可知ONAMOMBN,最后由MNAMBN可求得MN的长;3)过点EEG⊥y轴于G点,先证明△ABO≌△EGB,从而得到BG5,然后证明△BFP≌△GEP,从而得到BPGPBG,进而求出的面积;4)由△ABO≌△BEG,得BGAO5OBEG=5mm0),从而得到点E的坐标,进而即可得到答案.【详解】1)令y=0,代入,得,解得:x=-5x=0,代入,得y=5m∴A50),B05m∵OAOB∴5m5,即m1直线的解析式为:yx52∵AM⊥OQBN⊥OQ∴∠AMO∠BNO90°∴∠AOM∠MAO90°∵∠AOM∠BON90°∴∠MAO∠NOB△AMO△ONB中,∴△AMO≌△ONB∴ONAMOMBN∵AM4BN3∴MNAMBN73的面积不改变,理由如下:如图3所示:过点EEG⊥y轴于G点,连接AP∵△AEB为等腰直角三角形,∴ABEB∠ABO∠EBG90°∵EG⊥BG∴∠GEB∠EBG90°∴∠ABO∠GEB△ABO△EGB中, ∴△ABO≌△BEG∴BGAO5OBEG∵△OBF为等腰直角三角形, ∴OBBF∴BFEG△BFP△GEP中,∴△BFP≌△GEP∴BPGPBG的面积=BP∙OA=××5=4)由(3)可知:△ABO≌△BEG∴BGAO5OBEG=5mm0∴OG=5+5mE在第二象限,E-5m5+5m),x=-5my=5+5m∴y=5-x,即动点在直线y=5-x上运动,故答案是:y=5-x【点睛】本题主要考查一次函数的图像和性质与几何图形的综合,添加合适的辅助线构造一线三直角全等三角形模型,是解题的关键.  【好题演练】一、单选题1.(2020·沙坪坝区·重庆一中八年级期末)如图,反比例函数的图象经过等腰直角三角形的顶点和顶点,反比例函数的图象经过等腰直角三角形的顶点边交轴于点,若点的纵坐标为1,则的值是(    A B C D-62.(2020·福建龙岩市·八年级期末)如图,一次函数的图像与轴、轴分别交于两点,以为腰作等腰直角三角形,则直线的解析式是(    A B C D 二、填空题3.(2020·沙坪坝区·重庆八中八年级月考)如图,点的坐标为,点的坐标为,分别以为直角边在第三、第四象限作等腰,等腰,连接轴于点,点的坐标是______4.(2020·重庆南开中学七年级期末)如图,点在线段上,,且,点的速度沿向终点运动,同时点的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,同时停止运动.分别作的垂线,垂足为.设运动时间为,当以为顶点的三角形与全等时,的值为__________三、解答题5.(2021·上海九年级专题练习)已知是等腰直角三角形,.直角顶点Cx轴上,锐角顶点By轴上,过点A轴,垂足为点D.当点B不动,点Cx轴上滑动的过程中. 1)如图1,当点C的坐标是,点A的坐标是时,请求出点B的坐标;2)如图2,当点C的坐标是时,请写出点A的坐标;3)如图3,过点A作直线轴,交y轴于点E,交BC延长线于点FACy轴交于点G.当y轴恰好平分时,请写出AEBG的数量关系.       6.(2020·四川大学附属中学西区学校八年级期中)在直角坐标系中,Ax轴负半轴上的点,By轴负半轴上的点.1)如图,以A点为顶点,AB为腰在第三象限作等腰,若已知,试求C点的坐标.2)如图,若点A的坐标为,点B的坐标为,点D的纵坐标为b,以B为顶点, 为腰作等腰,当B点沿y轴负半轴向下运动且其他条件都不变时,求式子的值.3)如图Ex轴负半轴上的一点,且于点F,以OB为边作等边,连接EMOF于点N,求式子的值. 

    相关试卷

    中考数学二轮复习培优专题14 全等三角线中的辅助线做法及常见题型之等腰直角三角形构建三垂直全等 (含解析):

    这是一份中考数学二轮复习培优专题14 全等三角线中的辅助线做法及常见题型之等腰直角三角形构建三垂直全等 (含解析),共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    中考数学二轮复习培优专题14全等三角线中的辅助线做法及常见题型之等腰直角三角形构建三垂直全等 (含答案):

    这是一份中考数学二轮复习培优专题14全等三角线中的辅助线做法及常见题型之等腰直角三角形构建三垂直全等 (含答案),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题14:全等三角线中的辅助线做法及常见题型之等腰直角三角形构建三垂直全等-备战2021中考数学解题方法系统训练(全国通用):

    这是一份初中数学中考复习 专题14:全等三角线中的辅助线做法及常见题型之等腰直角三角形构建三垂直全等-备战2021中考数学解题方法系统训练(全国通用),共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map