专题7.2 创新型问题-2020届高考数学压轴题讲义(选填题)(原卷版)
展开这是一份专题7.2 创新型问题-2020届高考数学压轴题讲义(选填题)(原卷版),共7页。
【方法综述】
创新型问题主要包括:
(Ⅰ)将实际问题抽象为数学问题,此类问题往往含有文字语言、符号语言、图表语言,要明确题中已知量与未知量的数学关系,要理解生疏的情境、名词、概念,将实际问题数学化,将现实问题转化为数学问题,构建数学模型,运用恰当的数学方法解模(如借助不等式、导数等工具加以解决).
(Ⅱ)创新性问题
①以新概念、新定义给出的信息迁移型创新题,运用“老知识”解决新问题是关键.
②以新运算给出的发散型创新题,检验运算能力、数据处理能力.
③以命题的推广给出的类比、归纳型创新题,要注意观察特征、寻找规律,充分运用特殊与一般的辩证关系进行求解.
【解题策略】
类型一 实际应用问题
【例1】【北京市西城区2019届高三4月一模】团体购买公园门票,票价如下表:
购票人数 | 1~50 | 51~100 | 100以上 |
门票价格 | 13元/人 | 11元/人 | 9元/人 |
现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数____;____.
【指点迷津】解答应用性问题要先审清题意,然后将文字语言转化为数学符号语言,最后建立恰当的数学模型求解.其中,函数、数列、不等式、概率统计是较为常见的模型.
【举一反三】2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施,如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点变轨进入月球球为一个焦点的椭圆轨道I绕月飞行,之后卫星在点第二次变轨进入仍以为一个焦点的椭圆轨道II绕月飞行,若用和分别表示椭圆轨道I和II的焦距,用和分别表示椭圆轨道I和II的长轴长,给出下列式子:
① ② ③ ④
其中正确的式子的序号是( )
A. ②③ B. ①④ C. ①③ D. ②④
类型二 创新性问题
【例2】【四川省攀枝花市2019届高三第二次统一考试】定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.若,则下列四个命题:①是在上的“追逐函数”;②若是在上的“追逐函数”,则;③是在上的“追逐函数”;④当时,存在,使得是在上的“追逐函数”.其中正确命题的个数为( )
A.①③ B.②④ C.①④ D.②③
【指点迷津】高中数学创新试题呈现的形式是多样化的,但是考查的知识和能力并没有太大的变化,解决创新性问题应注意三点:认真审题,确定目标;深刻理解题意;开阔思路,发散思维,运用观察、比较、类比、猜想等进行合理推理,以便为逻辑思维定向.方向确定后,又需借助逻辑思维,进行严格推理论证,这两种推理的灵活运用,两种思维成分的交织融合,便是处理这类问题的基本思想方法和解题策略.
【例3】【安徽省宣城市2019届高三第二次调研】数列的前项和为,定义的“优值”为 ,现已知的“优值”,则_________.
【指点迷津】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.
【举一反三】【2019年3月2019届高三第一次全国大联考】若数列满足:对任意的且,总存在,使得 ,则称数列是“数列”.现有以下四个数列:①;②;③;④.其中是“数列”的有( )
A.个 B.个 C.个 D.个
2.【江西师范大学附属中学2019高三上期末】 已知表示不超过实数的最大整数(),如:,,.定义,给出如下命题:
①使成立的的取值范围是;
②函数的定义域为,值域为;
③.
其中正确的命题有( )
A.0个 B.1个 C.2个 D.3个
【强化训练】
一、选择题
1.【北京市顺义区2019届高三第二次统练】已知集合,若对于 , ,使得成立,则称集合是“互垂点集”.给出下列四个集合:
; ;
; .
其中是“互垂点集”的集合为
A., B., C. , D.,
2.【安徽省江南十校2019届高三3月检测】计算机内部运算通常使用的是二进制,用1和0两个数字与电路的通和断两种状态相对应.现有一个2019位的二进制数,其第一个数字为1,第二个数字为0,且在第个0和第个0之间有个1(),即,则该数的所有数字之和为( )
A.1973 B.1974 C.1975 D.1976
3.【北京市第四中学2019届高三高考调研卷(二)】若函数在其图象上存在不同的两点,其坐标满足条件:的最大值为0,则称为“柯西函数”,则下列函数:①;②;③;④.
其中为“柯西函数”的个数为 ( )
A.1 B.2 C.3 D.4
4.【北京市清华大学附属中学2019届高三下学期第一次模拟】正方形的边长为1,点在边上,点在边上,.动点从出发沿直线向运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点第一次碰到时,与正方形的边碰撞的次数为( )
A.4 B.3 C.8 D.6
5.【山东省淄博实验中学、淄博五中2019届高三上学期第一次诊断】设函数的定义域为,若存在常数,使对一切实数均成立,则称为“倍约束函数”现给出下列函数:;;;是定义在实数集上的奇函数,且对一切,均有其中是“倍约束函数”的序号是
A. B. C. D.
6.【湖南省岳阳市2019届高三二模】已知,若存在,使,则称函数与互为“度零点函数”.若与互为“1度零点函数”,则实数的取值范围为( )
A. B. C. D.
7.【四川省攀枝花市2019届高三第二次统一考试】定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.若,则下列四个命题:①是在上的“追逐函数”;②若是在上的“追逐函数”,则;③是在上的“追逐函数”;④当时,存在,使得是在上的“追逐函数”.其中正确命题的个数为( )
A. B. C. D.
8.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三二模】定义区间,,,的长度为.如果一个函数的所有单调递增区间的长度之和为(其中,为自然对数的底数),那么称这个函数为“函数”.下列四个命题:
①函数不是“函数”;
②函数是“函数”,且;
③函数是“函数”;
④函数是“函数”,且.
其中正确的命题的个数为( )
A.4个 B.3个 C.2个 D.1个
二、填空题
9.【山东省淄博实验中学、淄博五中2019届高三上学期第一次教学诊断】定义:若函数的定义域为,且存在非零常数,对任意,恒成立,则称为线周期函数,为的线周期若为线周期函数,则的值为______.
10.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷二》】如图所示,有三根和套在一根针上的片且自上而下由小到大的金属片.按下列规则,把金属片从一根针上全部移到另一根上,每次只能移动一个金属片,且在移动过程中较大的金属片不能放在较小的金属片的上面.则把个金属片从号针全部移到号针,最少要_次.
11.【北京延庆区2019届高三一模】已知集合 ,集合 满足①每个集合都恰有5个元素;② .集合中元素的最大值与最小值之和称为集合的特征数,记为(),则 的最大值与最小值的和为_______.
12.【四川省成都市2019届高三二诊】在平面直角坐标系中,定义两点,间的折线距离为,已知点,,,则的最小值为___.
13.【四川省成都市2019届高三二诊】在平面直角坐标系中,定义两点间的折线距离为,已知点,则的取值范围为___.
14.如图,有一矩形钢板ABCD缺损了一角(如图所示),边缘线OM上每一点到点D的距离都等于它到边AB的距离.工人师傅要将缺损的一角切割下来使剩余部分成一个五边形,若AB=1m,AD=0.5m,则五边形ABCEF的面积最大值为____m2.
15.【北京师范大学附属实验中学2019届高三下学期第一次质量评估】分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为a,在线段上取两个点,,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图2中的最上方的线段作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:
记第个图形(图1为第1个图形)中的所有线段长的和为,现给出有关数列的四个命题:
①数列是等比数列;
②数列是递增数列;
③存在最小的正数,使得对任意的正整数 ,都有 ;
④存在最大的正数,使得对任意的正整数,都有.
其中真命题的序号是________________(请写出所有真命题的序号).
16.【河南省十所名校2019届高三尖子生第二次联考】若函数的图象存在经过原点的对称轴,则称为“旋转对称函数”,下列函数中是“旋转对称函数”的有_________.(填写所有正确结论的序号)
①;②;③.
相关试卷
这是一份专题4.1 复杂的三视图问题-2020届高考数学压轴题讲义(选填题)(原卷版),共11页。
这是一份专题6.2 导数中的参数问题-2020届高考数学压轴题讲义(选填题)(原卷版),共5页。
这是一份专题1.4 多元问题的最值问题-2020届高考数学压轴题讲义(选填题)(原卷版),共4页。试卷主要包含了方法综述,解题策略,强化训练等内容,欢迎下载使用。