山东省泰安市2020年中考数学试卷
展开这是一份山东省泰安市2020年中考数学试卷,共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
山东省泰安市2020年中考数学试卷
一、单选题(共12题;共24分)
1.的倒数是( )
A. -2 B. 2 C. D.
2.下列运算正确的是( )
A. B. C. D.
3.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为( )
A. 元 B. 元 C. 元 D. 元
4.将含30°角的一个直角三角板和一把直尺如图放置,若 ,则 等于( )
A. 80° B. 100° C. 110° D. 120°
5.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:
册数/册
1
2
3
4
5
人数/人
2
5
7
4
2
根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )
A. 3,3 B. 3,7 C. 2,7 D. 7,3
6.如图, 是 的切线,点A为切点, 交 于点B , ,点C在 上, .则 等于( )
A. 20° B. 25° C. 30° D. 50°
7.将一元二次方程 化成 (a , b为常数)的形式,则a , b的值分别是( )
A. -4,21 B. -4,11 C. 4,21 D. -8,69
8.如图, 是 的内接三角形, , 是直径, ,则 的长为( )
A. 4 B. C. D.
9.在同一平面直角坐标系内,二次函数 与一次函数 的图象可能是( )
A. B. C. D.
10.如图,四边形 是一张平行四边形纸片,其高 ,底边 , ,沿虚线 将纸片剪成两个全等的梯形,若 ,则 的长为( )
A. B. C. D.
11.如图,矩形 中, 相交于点O , 过点B作 交 于点F , 交 于点M , 过点D作 交 于点E , 交 于点N , 连接 .则下列结论:
① ;② ;③ ;④当 时,四边形 是菱形.其中,正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
12.如图,点A , B的坐标分别为 ,点C为坐标平面内一点, ,点M为线段 的中点,连接 ,则 的最大值为( )
A. B. C. D.
二、填空题(共6题;共6分)
13.方程组 的解是________.
14.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A , B , C的坐标分别为 , , . 是 关于 轴的对称图形,将 绕点 逆时针旋转180°,点 的对应点为M , 则点M的坐标为________.
15.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地. ,斜坡 长 ,斜坡 的坡比为12∶5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿 至少向右移________ 时,才能确保山体不滑坡.(取 )
16.如图,点O是半圆圆心, 是半圆的直径,点A , D在半圆上,且 ,过点D作 于点C , 则阴影部分的面积是________.
17.已知二次函数 ( 是常数, )的y与x的部分对应值如下表:
x
-5
-4
-2
0
2
y
6
0
-6
-4
6
下列结论:
① ;
②当 时,函数最小值为 ;
③若点 ,点 在二次函数图象上,则 ;
④方程 有两个不相等的实数根.
其中,正确结论的序号是________.(把所有正确结论的序号都填上)
18.右表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,……,我们把第一个数记为 ,第二个数记为 ,第三个数记为 ,……,第 个数记为 ,则 ________.
三、解答题(共7题;共77分)
19.
(1)化简: ;
(2)解不等式: .
20.如图,已知一次函数 的图象与反比例函数 的图象交于点 ,点 .
(1)求反比例函数的表达式;
(2)若一次函数图象与y轴交于点C , 点D为点C关于原点O的对称点,求 的面积.
21.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.
根据统计图中的信息解答下列问题:
(1)本次参加比赛的学生人数是________名;
(2)把条形统计图补充完整;
(3)求扇形统计图中表示机器人的扇形圆心角 的度数;
(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.
22.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.
(1)A , B两种茶叶每盒进价分别为多少元?
(2)第一次所购茶叶全部售完后第二次购进A , B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A , B两种茶叶各多少盒?
23.若 和 均为等腰三角形,且 .
(1)如图(1),点B是 的中点,判定四边形 的形状,并说明理由;
(2)如图(2),若点G是 的中点,连接 并延长至点F,使 .求证:① ,② .
24.小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, 与 恰好为对顶角, ,连接 , ,点F是线段 上一点.
(1)探究发现:
当点F为线段 的中点时,连接 (如图(2),小明经过探究,得到结论: .你认为此结论是否成立?________.(填“是”或“否”)
(2)拓展延伸:
将(1)中的条件与结论互换,即:若 ,则点F为线段 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
(3)问题解决:
若 ,求 的长.
25.若一次函数 的图象与x轴,y轴分别交于A , C两点,点B的坐标为 ,二次函数 的图象过A , B , C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作 轴交抛物线于点D , 点E在抛物线上( 轴左侧),若 恰好平分 .求直线 的表达式;
(3)如图(2),若点P在抛物线上(点P在 轴右侧),连接 交 于点F , 连接 , .
①当 时,求点P的坐标;
②求 的最大值.
答案解析部分
一、单选题
1.【解析】【解答】解:根据乘积等于1的两数互为倒数,可直接得到- 的倒数为-2.
故答案为:A。
【分析】乘积为1的两个数叫作互为倒数。
2.【解析】【解答】A. ,故A不符合题意;
B. ,故B不符合题意;
C. ,故C不符合题意;
D. ,故D符合题意;
故答案选D.
【分析】根据整式的加减乘除法则分开讨论即可得到结果.
3.【解析】【解答】4000亿=400000000000= .
故答案为:C.
【分析】科学记数法就是将一个数字表示成a×10 n的形式,其中1≤|a|<10,n表示整数. n的值为这个数的整数位数减1,由此即可解答.
4.【解析】【解答】解:如图,由题意得DE∥GF,
∴∠1=∠3=50°,
∴∠4=180°-∠3=130°,
∴在四边形ACMN中,∠2=360°-∠A-∠C-∠4=110°.
故答案为:C
【分析】如图,先根据平行线性质求出∠3,再求出∠4,根据四边形内角和为360°即可求解.
5.【解析】【解答】由表中数据可得,人数基数最大的7人所应的册数是3,所以众数是3.
将数据从小到大排序后,第10和第11个数据均为3,所以中位数为: ,
故答案为:A.
【分析】由人数最多所对应的册数可得出众数,由总人数是20人可得,中位数是将数据从小到大排序后的第10和11个所对应册数的平均数即可求得结果;
6.【解析】【解答】解:如图,连接OA,
∵ 是 的切线,
∴∠PAO=90°,
∵ ,
∴∠POA=90°-∠P=80°,
∵OA=OB,
∴∠OAB=∠OBA=50°,
∵ ,
∴∠BOC=∠ABO=50°,
∴∠AOC=∠AOB+∠BOC=130°,
∵OA=OC,
∴∠OAC=∠C=25°,
∵ ,
∴∠BAC=∠C=25°.
故答案为:B
【分析】连接OA,求出∠POA= 80°,根据等腰三角形性质求出∠OAB=∠OBA=50°,进而求出∠AOC=130°,得到∠C=25°,根据平行线性质即可求解.
7.【解析】【解答】解:
移项得 ,
配方得 ,
即 ,
∴a=-4,b=21.
故答案为:A
【分析】根据配方法步骤解题即可.
8.【解析】【解答】如图,连接OB,
∵ 是 的内接三角形,
∴OB垂直平分AC,
∴ , ,
又∵ ,
∴ ,
∴ ,
又∵AD=8,
∴AO=4,
∴ ,
解得: ,
∴ .
故答案选B.
【分析】连接BO,根据圆周角定理可得 ,再由圆内接三角形的性质可得OB垂直平分AC,再根据正弦的定义求解即可.
9.【解析】【解答】解:A、由一次函数图象可知,a>0,b>0,由二次函数图象可知,a>0,b<0,不符合题意;
B、由一次函数图象可知,a>0,b<0,由二次函数图象可知,a<0,b<0,不符合题意;
C、由一次函数图象可知,a>0,b<0,由二次函数图象可知,a>0,b<0,符合题意;
D、由一次函数图象可知,a<0,b=0,由二次函数图象可知,a>0,b<0,不符合题意;
故答案为:C.
【分析】根据一次函数和二次函数的图象和性质,分别判断a,b的符号,利用排除法即可解答.
10.【解析】【解答】如图所示,过点F作 交BC于点M,
∵ , ,AG=2,
∴BG=FM=2,AF=GM,
令AF=x,
∵两个梯形全等,
∴AF=GM=EC=x,
又∵ ,
∴ ,
∴ ,
又∵BC=6,
∴ ,
∴ .
故答案选D.
【分析】过点F作 ,AG=2, ,可得BG=FM=2,令AF=x,根据 ,根据正切值可得EM的长,加起来等于BC即可得到结果.
11.【解析】【解答】∵BF⊥AC
∴∠BMC=90°
又∵
∴∠EDO=∠MBO,DE⊥AC
∴∠DNA=∠BMC=90°
∵四边形ABCD为矩形
∴AD=BC,AD∥BC,DC∥AB
∴∠ADB=∠CBD
∴∠ADB-∠EDO=∠CBD-∠MBO即∠AND=∠CBM
在△AND与△CMB
∵
∴△AND≌△CMB(AAS)
∴AN=CM,DN=BM,故①符合题意.
∵AB∥CD
∴∠NAE=∠MCF
又∵∠DNA=∠BMC=90°
∴∠ANE=∠CMF=90°
在△ANE与△CMF中
∵
∴△ANE≌△CMF(ASA)
∴NE=FM,AE=CF,故③符合题意.
在△NFM与△MEN中
∵
∴△NFM≌△MEN(SAS)
∴∠FNM=∠EMN
∴NF∥EM,故②符合题意.
∵AE=CF
∴DC-FC=AB-AE,即DF=EB
又根据矩形性质可知DF∥EB
∴四边形DEBF为平行四边
根据矩形性质可知OD=AO,
当AO=AD时,即三角形DAO为等边三角形
∴∠ADO=60°
又∵DN⊥AC
根据三线合一可知∠NDO=30°
又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30°
故DE=EB
∴四边形DEBF为菱形,故④符合题意.
故①②③④符合题意
故答案为:D.
【分析】通过判断△AND≌△CMB即可证明①,再判断出△ANE≌△CMF证明出③,再证明出△NFM≌△MEN,得到∠FNM=∠EMN,进而判断出②,通过 DF与EB先证明出四边形为平行四边形,再通过三线合一以及内角和定理得到∠NDO=∠ABD=30°,进而得到DE=BE,即可知四边形为菱形.
12.【解析】【解答】解:如图所示,取AB的中点N,连接ON,MN,
三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM= ON+MN最大,
∵ ,
则△ABO为等腰直角三角形,
∴AB= ,N为AB的中点,
∴ON= ,
又∵M为AC的中点,
∴MN为△ABC的中位线,BC=1,
则MN= ,
∴OM=ON+MN= ,
∴OM的最大值为
故答案选:B.
【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.
二、填空题
13.【解析】【解答】解:
①×3得 ③,
②-③得 ,
解得x=12,
把x=12代入①得12+y=16,
y=4,
∴原方程组的解为 .
故答案为:
【分析】利用加减法解方程即可.
14.【解析】【解答】解:如图,将 绕点 逆时针旋转180°,所以点 的对应点为M的坐标为 .
故答案为:
【分析】根据题意,画出旋转后图形,即可求解
15.【解析】【解答】解:如图,设点B沿BC向右移动至点H,使得∠HAD=50°,过点H作HF⊥AD于点F,
∵AB=26,斜坡 的坡比为12∶5,
则设BE=12a,AE=5a,
∴ ,解得:a=2,
∴BE=24,AE=10,
∴HF=BE=24,
∵∠HAF=50°,
则 ,解得:AF=20,
∴BH=EF=20-10=10,
故坡顶B沿 至少向右移10 时,才能确保山体不滑坡,
故答案为:10.
【分析】如图,设点B沿BC向右移动至点H,使得∠HAD=50°,过点H作HF⊥AD于点F,根据AB及AB的坡比,计算出BE和AE的长度,再根据∠HAF=50°,得出AF的值即可解答.
16.【解析】【解答】解:连接OA,
∵ ,OA=OB,
∴△OAB是等边三角形,
∴OA=AB=8,∠AOB=60°
∵AD∥BO,
∴∠DAO=∠AOB=60°,
∵OA=OD,
∴△OAD是等边三角形,
∴∠AOD=60°,
∴∠DOE=60°,
∴在Rt△OCD中, ,
∵AD∥BO,
∴ ,
∴ .
故答案为:
【分析】求出半圆半径、OC、CD长,根据AD∥BO,得到 ,根据 即可求解 .
17.【解析】【解答】解:由抛物线过点(﹣5,6)、(2,6)、(0,﹣4),可得:
,解得: ,
∴二次函数的解析式是 ,
∴a=1>0,故①符合题意;
当 时,y有最小值 ,故②不符合题意;
若点 ,点 在二次函数图象上,则 , ,∴ ,故③符合题意;
当y=﹣5时,方程 即 ,∵ ,∴方程 有两个不相等的实数根,故④符合题意;
综上,正确的结论是:①③④.
故答案为:①③④.
【分析】先根据表格中的数据利用待定系数法求出抛物线的解析式,进而可直接判断①;由抛物线的性质可判断②;把点 和点 代入解析式求出y1、y2即可③;当y=﹣5时,利用一元二次方程的根的判别式即可判断④,进而可得答案.
18.【解析】【解答】由已知数据1,3,6,10,15,……,可得 ,
∴ , ,
∴ .
故答案为20110.
【分析】根据所给数据可得到关系式 ,代入即可求值.
三、解答题
19.【解析】【分析】(1)先把小括号内的分式通分后,再把除法转化为乘法,约分后即可把分式化为最简;(2)先去掉不等式中的分母,然后去括号,移项,合并同类项,最后化系数为1即可求出不等式的解.
20.【解析】【分析】(1)根据点A、B都在反比例函数图象上,得到关于a的方程,求出a , 即可求出反比例函数解析式;(2)根据点A、B都在一次函数 的图象上,运用待定系数法求出直线解析式,进而求出点C坐标,求出CD长,即可求出 的面积.
21.【解析】【解答】解:(1)由题可知: (人),
∴参加学生的人数是80人;
【分析】(1)根据题目中已知B的占比和人数已知,可求出总人数;(2)用总人数减去其他人数可求出D的人数,然后补全条图即可;(3)先算出A的占比,再用占比乘以360°即可;(4)根据列表法进行求解即可;
22.【解析】【分析】(1)设A种茶叶每盒进价为 元,则B种茶叶每盒进价为 元,根据“4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒”列出分式方程解答,并检验即可;(2)设第二次A种茶叶购进 盒,则B种茶叶购进 盒,根据题意,表达出打折前后,A,B两种茶叶的利润,列出方程即可解答.
23.【解析】【分析】(1)利用等腰直角三角形的性质证得 , ,推出 ,再根据平行于同一直线的两直线平行即可推出结论;(2)①利用“SAS”证得 ,即可证明结论;②延长 至点H , 使 ,证得 ,推出 ,利用①的结论即可证明 .
24.【解析】解:(1)∵∠ABC=∠CDE=90°,
∴∠A+∠ACB=∠E+∠ECD,
∵∠ACB=∠ECD,
∴∠A=∠E,
∵AB=BD,
∴∠A=∠ADB,
在 中,
∵F是斜边CE的中点,
∴FD=FE=FC,
∴∠E=∠FDE,
∵∠A=∠E,
∴∠ADB=∠FDE,
∵∠FDE+∠FDC=90°,
∴∠ADB+∠FDC=90°,
即∠FDB=90°,
∴BD⊥DF,结论成立,
故答案为:是;
【分析】(1)利用等角的余角相等求出∠A=∠E,再通过AB=BD求出∠A=∠ADB,紧接着根据直角三角形斜边的中线等于斜边的一半求出FD=FE=FC,由此得出∠E=∠FDE,据此进一步得出∠ADB=∠FDE,最终通过证明∠ADB+∠EDC=90°证明结论成立即可;(2)根据垂直的性质可以得出 90°, 90°,从而可得 ,接着证明出 ,利用 可知 ,从而推出 ,最后通过证明 得出 ,据此加以分析即可证明结论;(3)如图,设G为 的中点,连接GD,由(1)得 ,故而 ,在 中,利用勾股定理求出 ,由此得出 ,紧接着,继续通过勾股定理求出 ,最后进一步证明 ,再根据相似三角形性质得出 ,从而求出 ,最后进一步分析求解即可.
25.【解析】【分析】(1)先求的点A、C的坐标,再用待定系数法求二次函数的解析式即可;(2)设 交 于点M . 由 可得 , .再由 ,根据平行线的性质可得 ,所以 .已知 平分 ,根据角平分线的定义可得 .利用AAS证得 .由全等三角形的性质可得 . 由此即可求得点M的坐标为(0,-1).再由 ,即可求得直线 解析式为 ;(3)①由 可得 .过点P作 交 于点N , 则 .根据相似三角形的性质可得 .由此即可求得 .设 ,可得 .所以 .由此即可得 =2,解得 .即可求得点 或 ;②由①得 .即 .再根据二次函数的性质即可得 .
相关试卷
这是一份2023年山东省泰安市中考数学试卷,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省泰安市中考数学试卷【附答案】,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2019年山东省泰安市中考数学试卷+答案+解析,共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。