终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    小学数学典型应用题含答案03

    立即下载
    加入资料篮
    小学数学典型应用题含答案03第1页
    小学数学典型应用题含答案03第2页
    小学数学典型应用题含答案03第3页
    还剩21页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    小学数学典型应用题含答案03

    展开

    这是一份小学数学典型应用题含答案03,共24页。学案主要包含了数量关系,解题思路和方法等内容,欢迎下载使用。
    应用题可分为一般应用题与典型应用题。
    没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
    题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。这本资料主要研究以下10类典型应用题:
    21 、方阵问题
    【含义】 将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。
    【数量关系】 (1)方阵每边人数与四周人数的关系:
    四周人数=(每边人数-1)×4 每边人数=四周人数÷4+1
    (2)方阵总人数的求法:
    实心方阵:总人数=每边人数×每边人数
    空心方阵:总人数=(外边人数)-(内边人数)
    内边人数=外边人数-层数×2
    (3)若将空心方阵分成四个相等的矩形计算,则:
    总人数=(每边人数-层数)×层数×4
    【解题思路和方法】 方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。
    例1 、在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?
    解 22×22=484(人)
    答:参加体操表演的同学一共有484人。
    例2 有一个3层中空方阵,最外边一层有10人,求全方阵的人数。
    解 10×10-(10+3×2) =84(人)
    答:全方阵84人。
    例3、 有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?
    解 (1)中空方阵外层每边人数=52÷4+1=14(人)
    (2)中空方阵内层每边人数=28÷4-1=6(人)
    (3)中空方阵的总人数=14×14-6×6=160(人)
    答:这队学生共160人。
    例4 、一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?
    解 (1)纵横方向各增加一层所需棋子数=4+9=13(只)
    (2)纵横增加一层后正方形每边棋子数=(13+1)÷2=7(只)
    (3)原有棋子数=7×7-9=40(只)
    答:棋子有40只。
    例5、 有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?
    解 第一种方法: 1+2+3+4+5=15(棵)
    第二种方法: (5+1)×5÷2=15(棵)
    答:这个三角形树林一共有15棵树。
    22 、商品利润问题
    【含义】 这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。
    【数量关系】 利润=售价-进货价
    利润率=(售价-进货价)÷进货价×100%
    售价=进货价×(1+利润率) 、 亏损=进货价-售价
    亏损率=(进货价-售价)÷进货价×100%
    【解题思路和方法】 简单的题目可以直接利用公式,复杂的题目变通后利用公式。
    例1、 某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?
    解 设这种商品的原价为1,则一月份售价为(1+10%),二月份的售价为(1+10%)×(1-10%),所以二月份售价比原价下降了
    1-(1+10%)×(1-10%)=1%
    答:二月份比原价下降了1%。
    例2 、某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?
    解 要知亏还是盈,得知实际售价52元比成本少多少或多多少元,进而需知成本。因为52元是原价的80%,所以原价为(52÷80%)元;又因为原价是按期望盈利30%定的,所以成本为 52÷80%÷(1+30%)=50(元)
    可以看出该店是盈利的,盈利率为 (52-50)÷50=4%
    答:该店是盈利的,盈利率是4%。
    例3、 成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作业本打折扣,结果获得的利润是预定的86%。问剩下的作业本出售时按定价打了多少折扣?
    解 问题是要计算剩下的作业本每册实际售价是原定价的百分之几。从题意可知,每册的原定价是0.25×(1+40%),所以关键是求出剩下的每册的实际售价,为此要知道剩下的每册盈利多少元。剩下的作业本售出后的盈利额等于实际总盈利与先售出的80%的盈利额之差,即
    0.25×1200×40%×86%-0.25×1200×40%×80%=7.20(元)
    剩下的作业本每册盈利 7.20÷[1200×(1-80%)]=0.03(元)
    又可知 (0.25+0.03)÷[0.25×(1+40%)]=80%
    答:剩下的作业本是按原定价的八折出售的。
    例4 、某种商品,甲店的进货价比乙店的进货价便宜10%,甲店按30%的利润定价,乙店按20%的利润定价,结果乙店的定价比甲店的定价贵6元,求乙店的定价。
    解 设乙店的进货价为1,则甲店的进货价为 1-10%=0.9
    甲店定价为 0.9×(1+30%)=1.17
    乙店定价为 1×(1+20%)=1.20
    由此可得 乙店进货价为 6÷(1.20-1.17)=200(元)
    乙店定价为 200×1.2=240(元)
    答:乙店的定价是240元。
    23 、存款利率问题
    【含义】 把钱存入银行是有一定利息的,利息的多少,与本金、利率、存期这三个因素有关。利率一般有年利率和月利率两种。年利率是指存期一年本金所生利息占本金的百分数;月利率是指存期一月所生利息占本金的百分数。
    【数量关系】 年(月)利率=利息÷本金÷存款年(月)数×100%
    利息=本金×存款年(月)数×年(月)利率
    本利和=本金+利息=本金×[1+年(月)利率×存款年(月)数]
    【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
    例1、 李大强存入银行1200元,月利率0.8%,到期后连本带利共取出1488元,求存款期多长。
    解 因为存款期内的总利息是(1488-1200)元,
    所以总利率为 (1488-1200)÷1200 又因为已知月利率,
    所以存款月数为 (1488-1200)÷1200÷0.8%=30(月)
    答:李大强的存款期是30月即两年半。
    例2、 银行定期整存整取的年利率是:二年期7.92%,三年期8.28%,五年期9%。如果甲乙二人同时各存入1万元,甲先存二年期,到期后连本带利改存三年期;乙直存五年期。五年后二人同时取出,那么,谁的收益多?多多少元?
    解 甲的总利息
    [10000×7.92%×2+[10000×(1+7.92%×2)]×8.28%×3
    =1584+11584×8.28%×3=4461.47(元)
    乙的总利息 10000×9%×5=4500(元)
    4500-4461.47=38.53(元)
    答:乙的收益较多,乙比甲多38.53元。
    24、 溶液浓度问题
    【含义】 在生产和生活中,我们经常会遇到溶液浓度问题。这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。
    【数量关系】 溶液=溶剂+溶质 、 浓度=溶质÷溶液×100%
    【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
    例1 爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成30%的糖水,需加糖多少克?
    解 (1)需要加水多少克? 50×16%÷10%-50=30(克)
    (2)需要加糖多少克? 50×(1-16%)÷(1-30%)-50
    =10(克)
    答:(1)需要加水30克,(2)需要加糖10克。
    例2 要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?
    解 假设全用30%的糖水溶液,那么含糖量就会多出
    600×(30%-25%)=30(克)
    这是因为30%的糖水多用了。于是,我们设想在保证总重量600克不变的情况下,用15%的溶液来“换掉”一部分30%的溶液。这样,每“换掉”100克,就会减少糖 100×(30%-15%)=15(克) 所以需要“换掉”30%的溶液(即“换上”15%的溶液) 100×(30÷15)=200(克)
    由此可知,需要15%的溶液200克。
    需要30%的溶液 600-200=400(克)
    答:需要15%的糖水溶液200克,需要30%的糖水400克。
    例3 甲容器有浓度为12%的盐水500克,乙容器有500克水。把甲中盐水的一半倒入乙中,混合后再把乙中现有盐水的一半倒入甲中,混合后又把甲中的一部分盐水倒入乙中,使甲乙两容器中的盐水同样多。求最后乙中盐水的百分比浓度。
    解 由条件知,倒了三次后,甲乙两容器中溶液重量相等,各为500克,因此,只要算出乙容器中最后的含盐量,便会知所求的浓度。下面列表推算:
    由以上推算可知,
    乙容器中最后盐水的百分比浓度为 24÷500=4.8%
    答:乙容器中最后的百分比浓度是4.8%。
    25 、构图布数问题
    【含义】 这是一种数学游戏,也是现实生活中常用的数学问题。所谓“构图”,就是设计出一种图形;所谓“布数”,就是把一定的数字填入图中。“构图布数”问题的关键是要符合所给的条件。
    【数量关系】 根据不同题目的要求而定。
    【解题思路和方法】 通常多从三角形、正方形、圆形和五角星等图形方面考虑。按照题意来构图布数,符合题目所给的条件。
    例1 、十棵树苗子,要栽五行子,每行四棵子,请你想法子。
    解 符合题目要求的图形应是一个五角星。
    4×5÷2=10
    因为五角星的5条边交叉重复,应减去一半。
    例2 、九棵树苗子,要栽十行子,每行三棵子,请你想法子。
    解 符合题目要求的图形是两个倒立交叉的等腰三角形,
    一个三角形的顶点在另一个三角形底边的中线上。
    例3 、九棵树苗子,要栽三行子,每行四棵子,请你想法子。
    解 符合题目要求的图形是一个三角形,每边栽4棵树,三个顶点上重复应减去,正好9棵。 4×3-3=9
    例4 把12拆成1到7这七个数中三个不同数的和,有几种写法?请设计一种图形,填入这七个数,每个数只填一处,且每条线上三个数的和都等于12。
    解 共有五种写法,即 12=1+4+7 12=1+5+6 12=2+3+7
    12=2+4+6 12=3+4+5
    在这五个算式中,4出现三次,其余的1、2、3、5、6、7各出现两次,因此,4应位于三条线的交点处,其余数都位于两条线的交点处。据此,我们可以设计出以下三种图形:
    26 、幻方问题
    【含义】 把n×n个自然数排在正方形的格子中,使各行、各列以及对角线上的各数之和都相等,这样的图叫做幻方。最简单的幻方是三级幻方。
    【数量关系】 每行、每列、每条对角线上各数的和都相等,这个“和”叫做“幻和”。
    三级幻方的幻和=45÷3=15
    五级幻方的幻和=325÷5=65
    【解题思路和方法】首先要确定每行、每列以及每条对角线上各数的和(即幻和),其次是确定正中间方格的数,然后再确定其它方格中的数。
    例1、 把1,2,3,4,5,6,7,8,9这九个数填入九个方格中,使每行、每列、每条对角线上三个数的和相等。
    解 幻和的3倍正好等于这九个数的和,所以幻和为
    (1+2+3+4+5+6+7+8+9)÷3=45÷3=15
    九个数在这八条线上反复出现构成幻和时,每个数用到的次数不全相同,最中心的那个数要用到四次(即出现在中行、中列、和两条对角线这四条线上),四角的四个数各用到三次,其余的四个数各用到两次。看来,用到四次的“中心数”地位重要,宜优先考虑。
    设“中心数”为Χ,因为Χ出现在四条线上,而每条线上三个数之和等于15,所以 (1+2+3+4+5+6+7+8+9)+(4-1)Χ=15×4
    即 45+3Χ=60 所以 Χ=5
    接着用奇偶分析法寻找其余四个偶数的位置,它们
    分别在四个角,再确定其余四个奇数的位置,它们分别
    在中行、中列,进一步尝试,容易得到正确的结果。
    例2 、把2,3,4,5,6,7,8,9,10这九个数填到九个方格中,
    使每行、每列、以及对角线上的各数之和都相等。
    解 只有三行,三行用完了所给的9个数,所以每行三数之和为
    (2+3+4+5+6+7+8+9+10)÷3=18
    假设符合要求的数都已经填好,那么三行、三列、两条对角线共8行上的三个数之和都等于18,我们看18能写成哪三个数之和:
    最大数是10:18=10+6+2=10+5+3
    最大数是9: 18=9+7+2=9+6+3=9+5+4
    最大数是8: 18=8+7+3=8+6+4
    最大数是7: 18=7+6+5 刚好写成8个算式。
    首先确定正中间方格的数。第二横行、第二竖行、两个斜行都用到正中间方格的数,共用了四次。观察上述8个算式,只有6被用了4次,所以正中间方格中应填6。
    然后确定四个角的数。四个角的数都用了三次,而上述8个算式中只有9、7、5、3被用了三次,所以9、7、5、3应填在四个角上。但还应兼顾两条对角线上三个数的和都为18。
    最后确定其它方格中的数。如图。
    27、 抽屉原则问题
    【含义】 把3只苹果放进两个抽屉中,会出现哪些结果呢?要么把2只苹果放进一个抽屉,剩下的一个放进另一个抽屉;要么把3只苹果都放进同一个抽屉中。这两种情况可用一句话表示:一定有一个抽屉中放了2只或2只以上的苹果。这就是数学中的抽屉原则问题。
    【数量关系】 基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。
    抽屉原则可以推广为:如果有m个抽屉,有k×m+r(0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。
    通俗地说,如果元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
    【解题思路和方法】 (1)改造抽屉,指出元素;
    (2)把元素放入(或取出)抽屉;
    (3)说明理由,得出结论。
    例1 、育才小学有367个1999年出生的学生,那么其中至少有几个学生的生日是同
    一天的?
    解 由于1999年是润年,全年共有366天,可以看作366个“抽屉”,把367个1999年出生的学生看作367个“元素”。367个“元素”放进366个“抽屉”中,至少有一个“抽屉”中放有2个或更多的“元素”。
    这说明至少有2个学生的生日是同一天的。
    例2 、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?
    解 人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到
    3645÷20=182……5 根据抽屉原则的推广规律,可知k+1=183
    答:陕西省至少有183人的头发根数一样多。
    例3 、一个袋子里有一些球,这些球仅只有颜色不同。其中红球10个,白球9个,黄球8个,蓝球2个。某人闭着眼睛从中取出若干个,试问他至少要取多少个球,才能保证至少有4个球颜色相同?
    解 把四种颜色的球的总数(3+3+3+2)=11 看作11个“抽屉”,那么,至少要取(11+1)个球才能保证至少有4个球的颜色相同。
    答;他至少要取12个球才能保证至少有4个球的颜色相同。
    28 、公约公倍问题
    【含义】 需要用公约数、公倍数来解答的应用题叫做公约数、公倍数问题。
    【数量关系】 绝大多数要用最大公约数、最小公倍数来解答。
    【解题思路和方法】 先确定题目中要用最大公约数或者最小公倍数,再求出答案。最大公约数和最小公倍数的求法,最常用的是“短除法”。
    例1、 一张硬纸板长60厘米,宽56厘米,现在需要把它剪成若干个大小相同的最大的正方形,不许有剩余。问正方形的边长是多少?
    解 硬纸板的长和宽的最大公约数就是所求的边长。
    60和56的最大公约数是4。
    答:正方形的边长是4厘米。
    例2、 甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?
    解 要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。 36、30、48的最小公倍数是720。
    答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。
    例3 、一个四边形广场,边长分别为60米,72米,96米,84米,现要在四角和四边植树,若四边上每两棵树间距相等,至少要植多少棵树?
    解 相邻两树的间距应是60、72、96、84的公约数,要使植树的棵数尽量少,须使相邻两树的间距尽量大,那么这个相等的间距应是60、72、96、84这几个数的最大公约数12。
    所以,至少应植树 (60+72+96+84)÷12=26(棵)
    答:至少要植26棵树。
    例4 、一盒围棋子,4个4个地数多1个,5个5个地数多1个,6个6个地数还多1个。又知棋子总数在150到200之间,求棋子总数。
    解 如果从总数中取出1个,余下的总数便是4、5、6的公倍数。因为4、5、6的最小公倍数是60,又知棋子总数在150到200之间,所以这个总数为
    60×3+1=181(个)
    答:棋子的总数是181个。
    29、 最值问题
    【含义】 科学的发展观认为,国民经济的发展既要讲求效率,又要节约能源,要少花钱多办事,办好事,以最小的代价取得最大的效益。这类应用题叫做最值问题。
    【数量关系】 一般是求最大值或最小值。
    【解题思路和方法】 按照题目的要求,求出最大值或最小值。
    例1 在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?
    解 先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过第二块饼。再过3分钟取出熟了的第二块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。这样做,用的时间最少,为9分钟。
    答:最少需要9分钟。
    例2 、在一条公路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。现在要把所有的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?
    解 我们采用尝试比较的方法来解答。
    集中到1号场总费用为 1×200×10+1×400×40=18000(元)
    集中到2号场总费用为 1×100×10+1×400×30=13000(元)
    集中到3号场总费用为 1×100×20+1×200×10+1×400×10=12000(元)
    集中到4号场总费用为 1×100×30+1×200×20+1×400×10=11000(元)
    集中到5号场总费用为 1×100×40+1×200×30=10000(元)
    经过比较,显然,集中到5号煤场费用最少。
    答:集中到5号煤场费用最少。
    例3、 北京和上海同时制成计算机若干台,北京可调运外地10台,上海可调运外地4台。现决定给重庆调运8台,给武汉调运6台,
    若每台运费如右表,问如何调运才使运费最省?
    解 北京调运到重庆的运费最高,因此,北京
    往重庆应尽量少调运。这样,把上海的4台全都调
    往重庆,再从北京调往重庆4台,调往武汉6台,运费就会最少,其数额为
    500×4+800×4+400×6=7600(元)
    答:上海调往重庆4台,北京调往武汉6台,调往重庆4台,这样运费最少。
    30、 列方程问题
    【含义】 把应用题中的未知数用字母Χ代替,根据等量关系列出含有未知数的等式——方程,通过解这个方程而得到应用题的答案,这个过程,就叫做列方程解应用题。
    【数量关系】 方程的等号两边数量相等。
    【解题思路和方法】 可以概括为“审、设、列、解、验、答”六字法。
    (1)审:认真审题,弄清应用题中的已知量和未知量各是什么,问题中的等量关系是什么。
    (2)设:把应用题中的未知数设为Χ。
    (3)列;根据所设的未知数和题目中的已知条件,按照等量关系列出方程。
    (4)解;求出所列方程的解。
    (5)验:检验方程的解是否正确,是否符合题意。
    (6)答:回答题目所问,也就是写出答问的话。
    同学们在列方程解应用题时,一般只写出四项内容,即设未知数、列方程、解方程、答语。设未知数时要在Χ后面写上单位名称,在方程中已知数和未知数都不带单位名称,求出的Χ值也不带单位名称,在答语中要写出单位名称。检验的过程不必写出,但必须检验。
    例1、 甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人?
    解 第一种方法:设乙班有Χ人,则甲班有(90-Χ)人。
    找等量关系:甲班人数=乙班人数×2-30人。
    列方程: 90-Χ=2Χ-30
    解方程得 Χ=40 从而知 90-Χ=50
    第二种方法:设乙班有Χ人,则甲班有(2Χ-30)人。
    列方程 (2Χ-30)+Χ=90
    解方程得 Χ=40 从而得知 2Χ-30=50
    答:甲班有50人,乙班有40人。
    例2 、鸡兔35只,共有94只脚,问有多少兔?多少鸡?
    解 第一种方法:设兔为Χ只,则鸡为(35-Χ)只,兔的脚数为4Χ个,鸡的脚数为2(35-Χ)个。根据等量关系“兔脚数+鸡脚数=94”可列出方程 4Χ+2(35-Χ)=94 解方程得 Χ=12 则35-Χ=23
    第二种方法:可按“鸡兔同笼”问题来解答。假设全都是鸡,
    则有 兔数=(实际脚数-2×鸡兔总数)÷(4-2)
    所以 兔数=(94-2×35)÷(4-2)=12(只)
    鸡数=35-12=23(只)
    答:鸡是23只,兔是12只。
    例3、 仓库里有化肥940袋,两辆汽车4次可以运完,已知甲汽车每次运125袋,乙汽车每次运多少袋?
    解 第一种方法:求出甲乙两车一次共可运的袋数,再减去甲车一次运的袋数,即是所求。 940÷4-125=110(袋)
    第二种方法:从总量里减去甲汽车4次运的袋数,即为乙汽车共运的袋数,再除以4,即是所求。 (940-125×4)÷4=110(袋)
    第三种方法:设乙汽车每次运Χ袋,可列出方程 940÷4-Χ=125
    解方程得 Χ=110
    第四种方法:设乙汽车每次运Χ袋,依题意得
    (125+Χ)×4=940 解方程得 Χ=110
    答:乙汽车每次运110袋。
    31、平均算法
    平均算法,就是已知几个不相等的同类量,在总数不变的前提下,移多补少使各部分完全相等的一种运算方法。这种每份完全相等的数,叫做平均数,所以又称为求平均数算法。
    平均算法的基本结构类型有两种:一是已知几个不相等的同类量,和与之相对应的份数,求平均每份是多少,称为求简单平均数;二是已知两个以上若干份数的平均数,求总平均数是多少,称为求复杂平均数。
    平均算法的解题关键,在于确定总数量和与之相对应的总份数。这里所说的总数量,是指几个不相等的同类量的和;这里所说的总份数,是指几个不相等的同类量的具体个数。
    平均算法的基本数量关系:
    总数量÷总份数=简单平均数 各组的数量和÷各组的份数和=复杂平均数
    1.我国领土面积960万平方公里,如按我国人口11亿计算,平均每人多少亩?(得数保留一位小数)
    分析一 要求平均每人多少亩,应知全国面积共有多少亩和全国共有多少人。已知全国11亿人口。那么,根据每公顷等于15亩,每平方公里等于100公顷的进位制,求出全国面积共有多少亩,即可得解。
    解 15×100×9600000÷1100000000 ≈13.1(亩)
    答:平均每人13.1亩。
    分析二 要求平均每人多少亩,还可通过每平米等于0.0015亩,每平方公里等于1000000平方米的进位制,先求出全国面积共有多少亩,再按11亿人口均分。
    解 0.0015×1000000×9600000÷1100000000
    ≈13.1(亩) 答(略)
    2.原来一队有70人,二队有76人。现在上级给调来28人,若使两队的人数相等,各队应分给几人?
    分析一 已知各队现有人数,要求各队应分几人,需知分配后各队增加到多少人。那么,由分配后两队的人数相等,可知各占总人数的一半;显然,各队比总人数的一半少几人,就应分给几人。
    解 (70+76+28)÷2-70 =174÷2-70=87-70=17(人)
    (70+76+28)÷2-76 =174÷2-76=87-76=11(人)
    或 28-17=11(人) 答:一队应分给17人,二队应分给11人。
    分析二 要使两队的人数相等,原来一队比二队少76-70=6(人),就应多分给6人。那么,假使调来的人数增加6人,就等于一队应分人数的2倍;假使调来的人数减少6人,就等于二队应分人数的2倍。因此,可用和差算法求解。
    解 [28-(76-70)]÷2
    =[28-6]÷2=22÷2=11(人)
    [28+(76-70)]÷2 =[28+6]÷2=34÷2=17(人)
    或28-11=17(人) 答(略)
    3.某班加工一批机器零件,开始每天做24个,7天完成了任务的1/4;后来改进工作方法,12天就完成了剩余的任务。后来平均每天做零件多少个?
    分析一 已知开始每天做24个,要知后来每天做几个,可通过后来效 答:后来平均每天做零件42个。
    分析二 要知后来平均每天做几个,也可通过总工作量和后来平均每天
    答(略)
    分析三 要知后来平均每天做几个,还可通过总工作量和用后来效率完
    答(略)
    分析四 要求后来平均每天做几个,已知用了12天,还应知道后来共
    4.某厂计划25天生产200台机床,由于改进工艺流程,提前5天完成任务,平均每天超产几台?
    分析一 要知每天超产几台,可通过计划每天生产台数和实际每天生产台数求得。已知总任务为200台,由计划25天完成,可知计划每天生产 200÷25=8(台);由实际用25-5=20(天)完成任务,便知实际每天生产
    200÷20=10(台)。 解 200÷(25-5)-200÷25 =200÷20-200÷25 =10-8=2(台) 答:平均每天超产两台。
    分析二 因为在实际完成任务的25-5=20(天)中,除了完成原计划20天的工作量,还完成了原计划5天的工作量;所以求出原计划5天的工作量是多少,按20天均分即可。
    解 200÷25×5÷(25- 5)
    =200÷25×5÷20=2(台) 答(略)
    分析三 要知每天超产几台,也可通过计划每天生产台数,和实际效率高出计划效率多少求得。由计划25天生产200台,可知计划每天生产200÷25=8(台);再根据任务一定时间和效率成反比,由实用天数和计划天数的比为(25-5)∶25=4∶5,得到实际效率和计划效率的比为5∶4,
    答(略)
    分析四 已知共生产200台,要知每天超产几台,还可通过计划生产和实际生产的日效率差求得。以总工作量为1,由题意可知,计划每天完成其
    答(略)
    5.某厂计划25天生产一批机床,由于改进工艺流程,平均每天超产2台,提前5天完成任务,这批机床共多少台?
    分析一 已知计划25天完成,要求共生产多少台,可通过计划每天生产几台求得。由计划25天完成提前5天做完,可知实际在25-5=20(天)中,除完成计划20天的工作量外,还多做了原计划5天的工作量。那么,由实际20天完成任务,每天超产2台,求出原计划5天的工作量为2×20=40(台),便知原计划每天生产40÷5=8(台)
    解 2×(25-5)÷5×25
    =2×20÷5×25=200(台) 答:这批机床共200台。
    分析二 由上解的分析已知,原计划5天生产40台,那么,再由原计划25天完成任务,可知25天包含几个5天,就应共生产多少个40台。
    解 2×(25-5)×(25÷5)
    =2×20×5=200(台) 答(略)
    分析三 由上解的分析已知,原计划5天生产40台;那么,再根据效率一定,时间的比等于产量的比,由原计划25天完成任务,5天的产量仅为
    答(略)
    答(略)
    6.甲乙丙三同学共买了练习册15本,当时甲付了12本的钱,乙付了3本的钱,丙没付钱。因为三人要的本数相等,回家后丙给了甲0.75元,乙给了甲应给的钱数,甲共收回多少钱?
    分析一 要知甲共收回多少钱,通过练习册的单价和甲共多交钱的本数可以求得。根据共买本数和每人要的本数相等,求出每人各要15÷3=5(本),那么,由当时未付钱的丙过后交给甲0.75元,可知练习册的单价为0.75÷5=0.15(元);由甲当时付了12本的钱,可知甲共多交了12-5=7(本)的钱。
    解 0.75÷(15÷3)×(12-15÷3)
    =0.75÷5×(12-5) =0.75÷5×7=1.05(元)
    答:甲共收回1.05元。
    分析二 要知甲共收回多少钱,通过甲共交的钱数和甲应交的钱数可以求得。由甲交了12本的钱和共买了15本练习册,可知甲交钱数占总金额的
    2.25(元),又可知甲也应付0.75元。
    答(略)
    分析三 要知甲共收回多少钱,还可通过总金额和甲实交钱本数与应交钱本数的分率差求得。由三人要的本数相等和丙交给甲0.75元,可知总金额

    答(略)
    7.甲乙二人同时都在看一本《八十天环游地球》,全书共270页。当甲看了一半多15页时,乙比甲少看20页。在这段时间里,甲平均每小时看30页,乙平均每小时看多少页?
    分析一 要知乙每小时看多少页,通过乙共看的页数和共用的时间可以求得。由甲每小时看30页,已经看了
    270÷2+15=150(页),可知甲看了150÷30=5(小时);已知乙和甲看的时间相等,那么,再由乙比甲少看20页,便知乙共看了150-20=130(页)。
    解 (270÷2+15-20)÷[(270÷2+15)÷30]
    =(135+15-20)÷[(135+15)÷30]
    =130÷[150÷30] =130÷5=26(天)
    答:乙平均每小时看26页。
    分析二 已知甲每小时看30页,要知乙每小时看多少页,可通过乙每小时比甲少看几页求得。已知乙共比甲少看20页,由上解的分析和计算,又知甲乙都是看了5小时,可见每小时乙比甲少看20÷5=4(页)。
    解 30-20÷[(270÷2+15)÷30] =30-20÷[(135+15)÷30]
    =30-20÷[150÷30] =30-20÷5=30-4=26(页) 答(略)
    分析三 已知甲每小时看30页,又知二人看的时间相等,那么,根据二人看书的速度不变,整体效率的比等于单位时间效率的比,所以只要求出在总时间内,乙看的页数是甲看页数的几分之几,也可得解。
    答(略)
    8.金瑟往返于甲乙两地,从甲地去乙地每小时走8里,由乙地回甲地每小时走6里。他打一个来回的平均速度是多少?
    分析一 要求往返平均速度,需知来回的总路程和共用时间。这里没有两地的距离,由于平均速度在各段路上相等,可以假设一段具体路程,为方便起见,可取往返速度的最小公倍数24里。于是可知往返共行24×2=48(里);往程用了24÷8=3(小时),返程用了24÷6=4(小时),来回共用了3+4=7(小时)。
    分析二 因为平均速度在各段路上相等,可以取单程为一里计算。由
    答(略)
    每小时行8里,由乙地回甲地每小时走多少里?
    分析一 要求返程的速度,需知返程的距离和所用时间。这两种量均未给出。因为平均速度在各段上相等,可取任意一段路程计算。假设两地相
    答:由乙地回甲地每小时走6里。
    分析二 由上解的分析得知,也可设单程为一里。那么,由往返平均
    答(略)
    10.为支持祖国的大西北搞绿化,六年五班分三组采集耐旱草籽。第一组16个平均每人采30克,第二组20人平均每人采36克,第三组12人平均每人采40克。全班平均每人采了多少克?
    分析一 要求全班每人平均采了多少克,需知全班总人数和全班共采克数。由各组人数,可知全班共16+20+12=48(人);由各组人数和平均每人采集克数,可知一组共采30×16=480(克),二组共采36×20=720(克),三个组共采40×12=480(克),三组共采480+720+480=1680(克)。
    解 (30×16+36×20+40×12)÷(16+20+12)
    =(480+720+480)÷48 =1680÷48=35(克)
    答:全班平均每人采草籽35克。
    分析二 数学应用题,并不是每一题都有多种算术解法,本题就只有上解一种。但是,根据各组的数量和÷各组的份数和=复杂平均数,可以列方程解。
    解 设全班平均每人采集x克,根据题意列方程,得
    (16+20+12)×x=30×16+36×20+40×12 x=35 答(略)21、方阵问题
    22、商品利润问题
    23、存款利率问题
    24、溶液浓度问题
    25、构图布数问题
    26、幻方问题
    27、抽屉原则问题
    28、公约公倍问题
    29、最值问题
    30、列方程问题
    甲容器
    乙容器
    原 有
    盐水500
    盐500×12%=60
    水500
    第一次把甲中一半倒入乙中后
    盐水500÷2=250
    盐60÷2=30
    盐水500+250=750
    盐30
    第二次把乙中一半倒入甲中后
    盐水250+375=625
    盐30+15=45
    盐水750÷2=375
    盐30÷2=15
    第三次使甲乙中
    盐水同样多
    盐水500
    盐45-9=36
    盐水500
    盐45-36+15=24
    2
    7
    6
    9
    5
    1
    4
    3
    8
    9
    2
    7
    4
    6
    8
    5
    10
    3
    重庆
    武汉
    北京
    800
    400
    上海
    500
    300

    相关学案

    数学6 百分数(一)学案及答案:

    这是一份数学6 百分数(一)学案及答案,共22页。

    小学数学六年级下册小升初人教版专题特训:列方程解应用题(含答案)学案:

    这是一份小学数学六年级下册小升初人教版专题特训:列方程解应用题(含答案)学案,共16页。学案主要包含了选择题,填空题,判断题,计算题,解答题等内容,欢迎下载使用。

    小学数学应用题解析大全学案:

    这是一份小学数学应用题解析大全学案,共6页。

    数学口算宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map