终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    高考物理(2010~2020)真题专项练习 15 电磁感应(解析版)

    立即下载
    加入资料篮
    高考物理(2010~2020)真题专项练习   15 电磁感应(解析版)第1页
    高考物理(2010~2020)真题专项练习   15 电磁感应(解析版)第2页
    高考物理(2010~2020)真题专项练习   15 电磁感应(解析版)第3页
    还剩27页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考物理(2010~2020)真题专项练习 15 电磁感应(解析版)

    展开

    这是一份高考物理(2010~2020)真题专项练习 15 电磁感应(解析版),共30页。试卷主要包含了有效长度等内容,欢迎下载使用。

    目录
    TOC \ "1-2" \h \u \l _Tc11715 题型一、有效长度、楞次定律的理解与认识 PAGEREF _Tc11715 1
    \l _Tc11365 题型二、电磁感应中的图像类问题 PAGEREF _Tc11365 12
    \l _Tc26446 题型三、互感与自感现象的考查 PAGEREF _Tc26446 15
    \l _Tc16985 题型四、压轴大题—法拉第电磁感应定律与动力学、能量的综合考查 PAGEREF _Tc16985 17
    题型一、有效长度、楞次定律的理解与认识
    1.(2020全国3)如图,一边长为l0的正方形金属框abcd固定在水平面内,空间存在方向垂直于水平面、磁感应强度大小为B的匀强磁场。一长度大于的均匀导体棒以速率v自左向右在金属框上匀速滑过,滑动过程中导体棒始终与ac垂直且中点位于ac上,导体棒与金属框接触良好。已知导体棒单位长度的电阻为r,金属框电阻可忽略。将导体棒与a点之间的距离记为x,求导体棒所受安培力的大小随x()变化的关系式。

    【答案】
    【解析】当导体棒与金属框接触的两点间棒的长度为l时,由法第电磁感应定律可知导体棒上感应电动势的大小为
    由欧姆定律可知流过导体棒的感应电流为
    式中R为这一段导体棒的电阻。按题意有
    此时导体棒所受安培力大小为
    由题设和几何关系有
    联立各式得
    2.(2020全国3)如图,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环。圆环初始时静止。将图中开关S由断开状态拨至连接状态,电路接通的瞬间,可观察到( )

    A. 拨至M端或N端,圆环都向左运动
    B. 拨至M端或N端,圆环都向右运动
    C. 拨至M端时圆环向左运动,拨至N端时向右运动
    D. 拨至M端时圆环向右运动,拨至N端时向左运动
    【答案】B
    【解析】无论开关S拨至哪一端,当把电路接通一瞬间,左边线圈中的电流从无到有,电流在线圈轴线上的磁场从无到有,从而引起穿过圆环的磁通量突然增大,根据楞次定律(增反减同),右边圆环中产生了与左边线圈中方向相反的电流,异向电流相互排斥,所以无论哪种情况,圆环均向右运动。
    故选B。
    3.(2020全国2)管道高频焊机可以对由钢板卷成的圆管的接缝实施焊接。焊机的原理如图所示,圆管通过一个接有高频交流电源的线圈,线圈所产生的交变磁场使圆管中产生交变电流,电流产生的热量使接缝处的材料熔化将其焊接。焊接过程中所利用的电磁学规律的发现者为( )

    A. 库仑B. 霍尔C. 洛伦兹D. 法拉第
    【答案】D
    【解析】由题意可知,圆管为金属导体,导体内部自成闭合回路,且有电阻,当周围的线圈中产生出交变磁场时,就会在导体内部感应出涡电流,电流通过电阻要发热。该过程利用原理的是电磁感应现象,其发现者为法拉第。故选D。
    4.(2020江苏)如图所示,两匀强磁场的磁感应强度和大小相等、方向相反。金属圆环的直径与两磁场的边界重合。下列变化会在环中产生顺时针方向感应电流的是( )

    A. 同时增大减小
    B. 同时减小增大
    C. 同时以相同的变化率增大和
    D. 同时以相同的变化率减小和
    【答案】B
    【解析】AB.产生顺时针方向的感应电流则感应磁场的方向垂直纸面向里。由楞次定律可知,圆环中的净磁通量变化为向里磁通量减少或者向外的磁通量增多,A错误,B正确。
    CD.同时以相同的变化率增大B1和B2,或同时以相同的变化率较小B1和B2,两个磁场的磁通量总保持大小相同,所以总磁通量为0,不会产生感应电流,CD 错误。
    故选B。
    5.(2020北京).如图甲所示,匝的线圈(图中只画了2匝),电阻,其两端与一个的电阻相连,线圈内有指向纸内方向的磁场。线圈中的磁通量按图乙所示规律变化。
    (1)判断通过电阻的电流方向;
    (2)求线圈产生的感应电动势;
    (3)求电阻两端的电压。
    【答案】(1);(2);(3)
    【解析】(1)根据图像可知,线圈中垂直于纸面向里的磁场增大,为了阻碍线圈中磁通量的增大,根据楞次定律可知线圈中感应电流产生的磁场垂直于纸面向外,根据安培定则可知线圈中的感应电流为逆时针方向,所通过电阻的电流方向为。
    (2)根据法拉第电磁感应定律
    (3)电阻两端的电压为路端电压,根据分压规律可知
    6.(2019全国1)空间存在一方向与直面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示,一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上。t=0时磁感应强度的方向如图(a)所示:磁感应强度B随时间t的变化关系如图(b)所示,则在t=0到t=t1的时间间隔内( )

    A. 圆环所受安培力的方向始终不变
    B. 圆环中的感应电流始终沿顺时针方向
    C. 圆环中感应电流大小为
    D. 圆环中的感应电动势大小为
    【答案】BC
    【解析】AB、根据B-t图象,由楞次定律可知,线圈中感应电流方向一直为顺时针,但在t0时刻,磁场的方向发生变化,故安培力方向的方向在t0时刻发生变化,则A错误,B正确;
    CD、由闭合电路欧姆定律得:,又根据法拉第电磁感应定律得:,又根据电阻定律得:,联立得:,则C正确,D错误。故本题选BC
    7.(2018全国3)如图(a),在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧。导线PQ中通有正弦交流电流i,i的变化如图(b)所示,规定从Q到P为电流的正方向。导线框R中的感应电动势( )

    A. 在时为零
    B. 在时改变方向
    C. 在时最大,且沿顺时针方向
    D. 在时最大,且沿顺时针方向
    【答案】:AC
    【解析】:由图(b)可知,导线PQ中电流在t=T/4时达到最大值,变化率为零,导线框R中磁通量变化率为零,根据法拉第电磁感应定律,在t=T/4时导线框中产生的感应电动势为零,选项A正确;在t=T/2时,导线PQ中电流图象斜率方向不变,导致导线框R中磁通量变化率的正负不变,根据楞次定律,所以在t=T/2时,导线框中产生的感应电动势方向不变,选项B错误;由于在t=T/2时,导线PQ中电流图象斜率最大,电流变化率最大,导致导线框R中磁通量变化率最大,根据法拉第电磁感应定律,在t=T/2时导线框中产生的感应电动势最大,由楞次定律可判断出感应电动势的方向为顺时针方向,选项C正确;由楞次定律可判断出在t=T时感应电动势的方向为逆时针方向,选项D错误。
    8.(2017全国1)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌。为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示。无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( )

    【答案】A
    【解析】:底盘上的紫铜薄板出现扰动时,其扰动方向不确定,在选项C这种情况下,紫铜薄板出现上下或左右扰动时,穿过薄板的磁通量难以改变,不能发生电磁感应现象,没有阻尼效应;在选项B、D这两种情况下,紫铜薄板出现上下扰动时,也没有发生电磁阻尼现象;选项A这种情况下,不管紫铜薄板出现上下或左右扰动时,都发生电磁感应现象,产生电磁阻尼效应,选项A正确。
    9.(2017全国2)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直。边长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图(a)所示。已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场。线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正)。下列说法正确的是( )

    A.磁感应强度的大小为0.5 T
    B.导线框运动速度的大小为0.5 m/s
    C.磁感应强度的方向垂直于纸面向外
    D.在t=0.4 s至t=0.6 s这段时间内,导线框所受的安培力大小为0.1 N
    【答案】BC
    【解析】由E–t图象可知,线框经过0.2 s全部进入磁场,则速度,选项B正确;E=0.01 V,根据E=BLv可知,B=0.2 T,选项A错误;根据楞次定律可知,磁感应强度的方向垂直于纸面向外,选项C正确;在t=0.4 s至t=0.6 s这段时间内,导线框中的感应电流,所受的安培力大小为F=BIL=0.04 N,选项D错误;故选BC。
    10.(2017全国3)如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直。
    金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面。现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( )

    A.PQRS中沿顺时针方向,T中沿逆时针方向
    B.PQRS中沿顺时针方向,T中沿顺时针方向
    C.PQRS中沿逆时针方向,T中沿逆时针方向
    D.PQRS中沿逆时针方向,T中沿顺时针方向
    【答案】D
    【解析】:因为PQ突然向右运动,由右手定则可知,PQRS中有沿逆时针方向的感应电流,穿过T中的磁通量减小,由楞次定律可知,T中有沿顺时针方向的感应电流,D正确,ABC错误。
    11.(2012全国2)如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为( )

    A. B. C. D.
    【答案】:C
    【解析】:产生同样大小的电流,就要产生同样大小的感应电动势,线框转动时,可以理解为是半径在转动切割,感应电动势的大小可以表达为,而磁场变化时产生的感应电动势大小为,E1=E2,联立即可求得C选项正确
    12.(2014全国1)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )
    A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化
    B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化
    C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化
    D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化
    【答案】D
    【解析】:产生感应电流的条件是:只要穿过闭合电路的磁通量发生变化,电路中就会产生感应电流.本题中的A、B选项都不会使电路中的磁通量发生变化,不满足产生感应电流的条件,故不正确.C选项虽然在插入条形磁铁瞬间电路中的磁通量发生变化,但是当人到相邻房间时,电路已达到稳定状态,电路中的磁通量不再发生变化,故观察不到感应电流.在给线圈通电、断电瞬间,会引起闭合电路磁通量的变化,产生感应电流,因此D选项正确.
    13.(2014·江苏卷)如图所示,一正方形线圈的匝数为n,边长为a,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt时间内,磁感应强度的方向不变,大小由B均匀地增大到2B.在此过程中,线圈中产生的感应电动势为( )

    A.eq \f(Ba2,2Δt) B.eq \f(nBa2,2Δt) C.eq \f(nBa2,Δt) D.eq \f(2nBa2,Δt)
    【答案】B
    【解析】: 根据法拉第电磁感应定律知E=neq \f(ΔΦ,Δt)=neq \f(ΔB·S,Δt),这里的S指的是线圈在磁场中的有效面积,即S=eq \f(a2,2),故E=neq \f((2B-B)S,Δt)=eq \f(nBa2,2Δt),因此B项正确.
    14.(2014·山东) 如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好,在向右匀速通过M、N两区的过程中,导体棒所受安培力分别用FM、FN表示.不计轨道电阻.以下叙述正确的是( )

    A.FM向右 B.FN向左 C.FM逐渐增大 D.FN逐渐减小
    【答案】BCD
    【解析】:根据安培定则可判断出,通电导线在M区产生竖直向上的磁场,在N区产生竖直向下的磁场.当导体棒匀速通过M区时,由楞次定律可知导体棒受到的安培力向左.当导体棒匀速通过N区时,由楞次定律可知导体棒受到的安培力也向左.选项B正确.设导体棒的电阻为r,轨道的宽度为L,导体棒产生的感应电流为I′,则导体棒受到的安培力F安=BI′L=Beq \f(BLv,R+r)L=eq \f(B2L2v,R+r),在导体棒从左到右匀速通过M区时,磁场由弱到强,所以FM逐渐增大;在导体棒从左到右匀速通过N区时,磁场由强到弱,所以FN逐渐减小.选项C、D正确.
    15.(2014·四川) 如图所示,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固定在框上,H、P的间距很小.质量为0.2 kg的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m的正方形,其有效电阻为0.1 Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(0.4-0.2t) T,图示磁场方向为正方向.框、挡板和杆不计形变.则( )

    A.t=1 s时,金属杆中感应电流方向从C到D
    B.t=3 s时,金属杆中感应电流方向从D到C
    C.t=1 s时,金属杆对挡板P的压力大小为0.1 N
    D.t=3 s时,金属杆对挡板H的压力大小为0.2 N
    【答案】AC
    【解析】 由于B=(0.4-0.2 t) T,在t=1 s时穿过平面的磁通量向下并减少,则根据楞次定律可以判断,金属杆中感应电流方向从C到D,A正确.在t=3 s时穿过平面的磁通量向上并增加,则根据楞次定律可以判断,金属杆中感应电流方向仍然是从C到D,B错误.由法拉第电磁感应定律得E=eq \f(ΔΦ,Δt)=eq \f(ΔB,Δt)Ssin 30°=0.1 V,由闭合电路的欧姆定律得电路电流I=eq \f(E,R)=1 A,在t=1 s时,B=0.2 T,方向斜向下,电流方向从C到D,金属杆对挡板P的压力水平向右,大小为FP=BILsin 30°=0.1 N,C正确.同理,在t=3 s时,金属杆对挡板H的压力水平向左,大小为FH=BILsin 30°=0.1 N,D错误.
    16.(2014·安徽卷)英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为+q的小球.已知磁感应强度B随时间均匀增加,其变化率为k,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是( )

    A.0 B.eq \f(1,2)r2qk C.2πr2qk D.πr2qk
    【答案】:D
    【解析】: 本题考查电磁感应、动能定理等知识点,考查对“变化的磁场产生电场”的理解能力与推理能力.由法拉第电磁感应定律可知,沿圆环一周的感生电动势E感=eq \f(ΔΦ,Δt)=eq \f(ΔB,Δt)·S=k·πr2,电荷环绕一周,受环形电场的加速作用,应用动能定理可得W=qE感=πr2qk.选项D正确。
    17.(2014·全国卷)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率( )
    A.均匀增大
    B.先增大,后减小
    C.逐渐增大,趋于不变
    D.先增大,再减小,最后不变
    【答案】C
    【解析】: 本题考查楞次定律、法拉第电磁感应定律.竖直圆筒相当于闭合电路,磁铁穿过闭合电路,产生感应电流,根据楞次定律,磁铁受到向上的阻碍磁铁运动的安培力,开始时磁铁的速度小,产生的感应电流也小,安培力也小,磁铁加速运动,随着速度的增大,产生的感应电流增大,安培力也增大,直到安培力等于重力的时候,磁铁匀速运动.所以C正确.
    18.(2014·江苏)如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有( )
    A.增加线圈的匝数 B.提高交流电源的频率
    C.将金属杯换为瓷杯 D.取走线圈中的铁芯

    【答案】AB
    【解析】根据法拉第电磁感应定律E=neq \f(ΔΦ,Δt)知,增加线圈的匝数n,提高交流电源的频率即缩短交流电源的周期(相当于减小Δt),这两种方法都能使感应电动势增大故选项A、B正确.将金属杯换为瓷杯,则没有闭合电路,也就没有感应电流;取走线圈中的铁芯,则使线圈中的磁场大大减弱,则磁通量的变化率减小.感应电动势减小.故选项C、D错误.
    题型二、电磁感应中的图像类问题
    19.(2019全国2)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计。虚线ab、cd均与导轨垂直,在ab与cd之间的区域存在垂直于导轨所在平面的匀强磁场。将两根相同的导体棒PQ、MN先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好。已知PQ进入磁场开始计时,到MN离开磁场区域为止,流过PQ的电流随时间变化的图像可能正确的是( )

    A. B. C. D.
    【答案】AD
    【解析】:由于PQ进入磁场时加速度为零,AB.若PQ出磁场时MN仍然没有进入磁场,则PQ出磁场后至MN进入磁场的这段时间,由于磁通量φ不变,无感应电流。由于PQ、MN同一位置释放,故MN进入磁场时与PQ进入磁场时的速度相同,所以电流大小也应该相同,A正确B错误;CD.若PQ出磁场前MN已经进入磁场,由于磁通量φ不变,PQ、MN均加速运动,PQ出磁场后,MN由于加速故电流比PQ进入磁场时电流大,故C正确D错误;
    20.(2019全国2)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上。t=0时,棒ab以初速度v0向右滑动。运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示。下列图像中可能正确的是( )

    A. B. C. D.
    【答案】AC
    【解析】:ab棒向右运动,切割磁感线产生感应电流,则受到向左的安培力,从而向左做减速运动,;金属棒cd受向右的安培力作用而做加速运动,随着两棒的速度差的减小安培力减小,加速度减小,当两棒速度相等时,感应电流为零,最终两棒共速,一起做匀速运动,故最终电路中电流为0,故AC正确,BD错误。
    21.(2012全国2)如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i正方向与图中箭头方向相同,则i随时间t变化的图线可能是( )

    【答案】:C
    【解析】:由题可得,线框中感应电流沿顺时针方向,由安培定则可知,感应电流的磁场垂直于纸面向里;由楞次定律可得:如果原磁场增强时,原磁场方向应垂直于纸面向外,由安培定则可知,导线电流方向应该向下,为负的,且电流越来越大;
    由楞次定律可知:如果原磁场方向垂直于纸面向里,则原磁场减弱,直线电流变小,由安培定则可知,直线电流应竖直向上,是正的;
    A、图示电流使线框中的感应电流沿顺时针方向,但线框在水平方向受到的合力始终水平向左,故A错误;
    B、图示电流使线框中产生的感应电流沿逆时针方向,故B错误;
    C、由图示可知,直线电流按A所示变化,感应电流始终沿顺时针方向,由楞次定律可知,在i大于零时,为阻碍磁通量的减小,线框受到的合力水平向左,在i小于零时,为阻碍磁通量的增加,线框受到的合力水平向右,故C正确;
    D、图示电流不能使线框中的感应电流始终沿顺时针方向,故D错误;故选:C.
    22.(2013.山东)将一段导线绕成图甲所示的闭合电路,并固定在水平面(纸面)内,回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中。回路的圆形区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图像如图乙所示。用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图像是( )

    【答案】:B
    【解析】:分析一个周期内的情况:在前半个周期内,磁感应强度均匀变化,磁感应强度B的变化度一定,由法拉第电磁感应定律得知,圆形线圈中产生恒定的感应电动势恒定不变,则感应电流恒定不变,ab边在磁场中所受的安培力也恒定不变,由楞次定律可知,圆形线圈中产生的感应电流方向为顺时针方向,通过ab的电流方向从b→a,由左手定则判断得知,ab所受的安培力方向水平向左,为负值;同理可知,在后半个周期内,安培力大小恒定不变,方向水平向右.故B正确.
    23.(2011年山东)如图甲所示,两固定的竖直光滑金属导轨足够长且电阻不计。两质量、长度均相同的导体棒c、d,置于边界水平的匀强磁场上方同一高度h处。磁场宽为3h,方向与导轨平面垂直。先由静止释放c,c刚进入磁场即匀速运动,此时再由静止释放d,两导体棒与导轨始终保持良好接触。用ac表示c的加速度,Ekd表示d的动能,xc、xd分别表示c、d相对释放点的位移。图乙中正确的是( )
    ac
    xc
    O
    h
    2h
    3h
    4h
    5h
    ac
    xc
    O
    h
    2h
    3h
    4h
    5h
    Ekd
    xd
    O
    h
    2h
    3h
    4h
    5h
    Ekd
    xd
    O
    h
    2h
    3h
    4h
    5h
    A
    B
    C
    D
    图乙
    【答案】:BD
    【解析】:c导体棒落入磁场之前做自由落体运动,加速度恒为g,有,,c棒进入磁场以
    速度v做匀速直线运动时,d棒开始做自由落体运动,与c棒做自由落体运动的过程相同,此时c棒在磁场
    中做匀速直线运动的路程为,d棒进入磁场而c还没有传出磁场的过程,无电磁感应,
    两导体棒仅受到重力作用,加速度均为g,知道c棒穿出磁场,B正确。c棒穿出磁场,d棒切割磁感线产
    生电动势,在回路中产生感应电流,因此时d棒速度大于c进入磁场是切割磁感线的速度,故电动势、电
    流、安培力都大于c刚进入磁场时的大小,d棒减速,直到穿出磁场仅受重力,做匀加速运动,结合匀变速
    直线运动,可知加速过程动能与路程成正比,D正确。
    题型三、互感与自感现象的考查
    24.(2017年北京)图1和图2是教材中演示自感现象的两个电路图,L1和L2为电感线圈。实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同。下列说法正确的是 ( )

    A.图1中,A1与L1的电阻值相同
    B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流
    C.图2中,变阻器R与L2的电阻值相同
    D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等
    【答案】C
    【解析】断开开关S1瞬间,灯A1突然闪亮,由于线圈L1的自感,通过L1的电流逐渐减小,且通过A1,即自感电流会大于原来通过A1的电流,说明闭合S1,电路稳定时,通过A1的电流小于通过L1的电流,L1的电阻小于A1的电阻,AB错误;闭合S2,电路稳定时,A2与A3的亮度相同,说明两支路的电流相同,因此变阻器R与L2的电阻值相同,C正确;闭合开关S2,A2逐渐变亮,而A3立即变亮,说明L2中电流与变阻器R中电流不相等,D错误。
    25.(2018全国1)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是( )

    A. 开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动
    B. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向
    C. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向
    D. 开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动
    【答案】AD
    【解析】:开关闭合的瞬间,左侧的线圈中磁通量变化,产生感应电动势和感应电流,由楞次定律可判断出直导线中电流方向为由南向北,由安培定则可判断出小磁针处的磁场方向垂直纸面向里,小磁针的N极朝垂直纸面向里的方向转动,选项A正确;开关闭合并保持一段时间后,左侧线圈中磁通量不变,线圈中感应电动势和感应电流为零,直导线中电流为零,小磁针恢复到原来状态,选项BC错误;开关闭合并保持一段时间后再断开后的瞬间,左侧的线圈中磁通量变化,产生感应电动势和感应电流,由楞次定律可判断出直导线中电流方向为由北向南,由安培定则可判断出小磁针处的磁场方向垂直纸面向外,小磁针的N极朝垂直纸面向外的方向转动,选项D正确。
    26.(2014·新课标全国卷1)如图(a)所示,线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( )

    【答案】C
    【解析】: 本题考查了电磁感应的图像.根据法拉第电磁感应定律,ab线圈电流的变化率与线圈cd上的波形图一致,线圈cd上的波形图是方波,ab线圈电流只能是线性变化的,所以C正确.
    题型四、压轴大题—法拉第电磁感应定律与动力学、能量的综合考查
    27.(2020天津)如图所示,垂直于纸面向里的匀强磁场,磁感应强度B随时间t均匀变化。正方形硬质金属框abcd放置在磁场中,金属框平面与磁场方向垂直,电阻,边长。求
    (1)在到时间内,金属框中的感应电动势E;
    (2)时,金属框ab边受到的安培力F的大小和方向;
    (3)在到时间内,金属框中电流的电功率P。

    【答案】(1)0.08V;(2)0.016N,方向垂直于ab向左;(3)0.064W
    【解析】(1)在到的时间内,磁感应强度的变化量,设穿过金属框的磁通量变化量为,有

    由于磁场均匀变化,金属框中产生的电动势是恒定的,有

    联立①②式,代入数据,解得

    (2)设金属框中的电流为I,由闭合电路欧姆定律,有

    由图可知,时,磁感应强度为,金属框ab边受到的安培力

    联立①②④⑤式,代入数据,解得

    方向垂直于ab向左。⑦
    (3)在到时间内,金属框中电流的电功率

    联立①②④⑧式,代入数据,解得

    28.(2019北京)如图所示,垂直于纸面的匀强磁场磁感应强度为B。纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:

    (1)感应电动势的大小E;
    (2)拉力做功的功率P;
    (3)ab边产生的焦耳热Q。
    【答案】(1) ;(2) ;(3)
    【解析】:由导体棒切割磁感线产生电动势综合闭合电路欧姆定律和解题。
    (1)从ad边刚进入磁场到bc边刚要进入的过程中,只有ad边切割磁感线,所以产生的感应电动势为:;
    (2)线框进入过程中线框中的电流为:
    ad边安培力为:
    由于线框匀速运动,所以有拉力与安培力大小相等,方向相反,即
    所以拉力的功率为:
    联立以上各式解得:;
    (3) 线框进入过程中线框中的电流为:
    进入所用的时间为:
    ad边的电阻为:
    焦耳热为:
    联立解得:。
    29.(2020全国1)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。ab、dc足够长,整个金属框电阻可忽略。一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。经过一段时间后( )

    A. 金属框的速度大小趋于恒定值
    B. 金属框的加速度大小趋于恒定值
    C. 导体棒所受安培力的大小趋于恒定值
    D. 导体棒到金属框bc边的距离趋于恒定值
    【答案】BC
    【解析】由bc边切割磁感线产生电动势,形成电流,使得导体棒MN受到向右的安培力,做加速运动,bc边受到向左的安培力,向右做加速运动。当MN运动时,金属框的bc边和导体棒MN一起切割磁感线,设导体棒MN和金属框的速度分别为、,则电路中的电动势
    电流中的电流
    金属框和导体棒MN受到的安培力
    ,与运动方向相反
    ,与运动方向相同
    设导体棒MN和金属框的质量分别为、,则对导体棒MN
    对金属框
    初始速度均为零,则a1从零开始逐渐增加,a2从开始逐渐减小。当a1=a2时,相对速度
    大小恒定。整个运动过程用速度时间图象描述如下。

    综上可得,金属框的加速度趋于恒定值,安培力也趋于恒定值,BC选项正确;
    金属框的速度会一直增大,导体棒到金属框bc边的距离也会一直增大,AD选项错误。
    故选BC。
    30.(2020江苏)如图所示,电阻为的正方形单匝线圈的边长为,边与匀强磁场边缘重合。磁场的宽度等于线圈的边长,磁感应强度大小为。在水平拉力作用下,线圈以的速度向右穿过磁场区域。求线圈在上述过程中:
    (1)感应电动势的大小E;
    (2)所受拉力的大小F;
    (3)感应电流产生的热量Q。

    【答案】(1)0.8V;(2)0.8N;(3)0.32J
    【解析】(1)由题意可知当线框切割磁感线是产生的电动势为
    (2)因为线框匀速运动故所受拉力等于安培力,有
    根据闭合电路欧姆定律有
    结合(1)联立各式代入数据可得F=0.8N;
    (3)线框穿过磁场所用的时间为
    故线框穿越过程产生的热量为
    31.(2020北京).某试验列车按照设定的直线运动模式,利用计算机控制制动装置,实现安全准确地进站停车。制动装置包括电气制动和机械制动两部分。图1所示为该列车在进站停车过程中设定的加速度大小随速度的变化曲线。
    (1)求列车速度从降至经过的时间t及行进的距离x。
    (2)有关列车电气制动,可以借助图2模型来理解。图中水平平行金属导轨处于竖直方向的匀强磁场中,回路中的电阻阻值为,不计金属棒及导轨的电阻。沿导轨向右运动的过程,对应列车的电气制动过程,可假设棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比。列车开始制动时,其速度和电气制动产生的加速度大小对应图1中的点。论证电气制动产生的加速度大小随列车速度变化的关系,并在图1中画出图线。
    (3)制动过程中,除机械制动和电气制动外,列车还会受到随车速减小而减小的空气阻力。分析说明列车从减到的过程中,在哪个速度附近所需机械制动最强?
    (注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)


    【答案】. (1) ,;(2) 列车电气制动产生的加速度与列车的速度成正比,为过P点的正比例函数,论证过程见解析。画出的图线如下图所示:


    (3)
    【解析】(1)由图1可知,列车速度从降至的过程加速度为0.7m/s2的匀减速直线运动,由加速度的定义式:

    由速度位移公式

    (2)由MN沿导轨向右运动切割磁场线产生感应电动势
    回路中感应电流
    MN受到的安培力
    加速度为
    结合上面几式得
    所以棒的加速度与棒的速度为正比例函数。又因为列车的电气制动过程,可假设MN棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比,所以列车电气制动产生的加速度与列车的速度成正比,为过P点的正比例函数。画出的图线如下图所示。

    (3)由(2)可知,列车速度越小,电气制动的加速度越小。由题设可知列车还会受到随车速减小而减小的空气阻力。所以电气制动和空气阻力产生的加速度都随速度的减小而减小。由图1 中,列车速度从降至的过程中加速度大小随速度v减小而增大,所以列车速度从降至的过程中所需的机械制动逐渐变强,所以列车速度为附近所需机械制动最强。
    32.(2019天津)如图所示,固定在水平面上间距为的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒和长度也为、电阻均为,两棒与导轨始终接触良好。两端通过开关与电阻为的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量。图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为。的质量为,金属导轨足够长,电阻忽略不计。

    (1)闭合,若使保持静止,需在其上加多大水平恒力,并指出其方向;
    (2)断开,在上述恒力作用下,由静止开始到速度大小为的加速过程中流过的电荷量为,求该过程安培力做的功。
    【答案】(1),方向水平向右;(2)
    【解析】:(1)设线圈中的感应电动势为,由法拉第电磁感应定律,则

    设与并联的电阻为,有

    闭合时,设线圈中的电流为,根据闭合电路欧姆定律得

    设中的电流为,有

    设受到的安培力为,有

    保持静止,由受力平衡,有ⅠⅡⅢⅣ

    联立①②③④⑤⑥式得

    方向水平向右。
    (2)设由静止开始到速度大小为的加速过程中,运动的位移为,所用时间为,回路中的磁通量变化为,平均感应电动势为,有

    其中

    设中的平均电流为,有

    根据电流的定义得

    由动能定理,有

    联立⑦⑧⑨⑩⑪⑫⑬式得

    33..(2015海南)如图,两平行金属导轨位于同一水平面上,相距,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下。一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速度匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好。已知导体棒与导轨间的动摩擦因数为,重力加速度大小为g,导轨和导体棒的电阻均可忽略。求

    (1)电阻R消耗的功率;
    (2)水平外力的大小。
    【答案】:见解析
    【解析】:(1)导体切割磁感线运动产生的电动势为,
    根据欧姆定律,闭合回路中的感应电流为
    电阻R消耗的功率为,联立可得
    对导体棒受力分析,受到向左的安培力和向左的摩擦力,向右的外力,三力平衡,故有,,故
    34.(2014·安徽)如图所示,匀强磁场的磁感应强度B为0.5 T,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“A”形状的光滑金属导轨的MPN(电阻忽略不计),MP和NP长度均为2.5 m,MN连线水平,长为3 m.以MN中点O为原点、OP为x轴建立一维坐标系Ox.一根粗细均匀的金属杆CD,长度d为3 m,质量m为1 kg、电阻R为0.3 Ω,在拉力F的作用下,从MN处以恒定速度v=1 m/s在导轨上沿x轴正向运动(金属杆与导轨接触良好).g取10 m/s2.
    (1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8 m处电势差UCD;
    (2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图2中画出Fx关系图像;
    (3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热.
    【答案】 (1)-0.6 V (2)略 (3)7.5 J
    【解析】 (1)金属杆CD在匀速运动中产生的感应电动势
    E=Blv(l=d),E=1.5 V(D点电势高)
    当x=0.8 m时,金属杆在导轨间的电势差为零.设此时杆在导轨外的长度为l外,则
    l外=d-eq \f(OP-x,OP)d
    OP=eq \r(MP2-\b\lc\(\rc\)(\a\vs4\al\c1(\f(MN,2)))\s\up12(2))
    得l外=1.2 m
    由楞次定律判断D点电势高,故CD两端电势差
    UCB=-Bl外v, UCD=-0.6 V
    (2)杆在导轨间的长度l与位置x关系是
    l=eq \f(OP-x,OP)d=3-eq \f(3,2)x
    对应的电阻R1为R1=eq \f(l,d)R,电流I=eq \f(Blv,R1)
    杆受的安培力F安=BIl=7.5-3.75x
    根据平衡条件得F=F安+mgsin θ
    F=12.5-3.75x(0≤x≤2)
    画出的Fx图像如图所示.
    (3)外力F所做的功WF等于Fx图线下所围的面积,即
    WF=eq \f(5+12.5,2)×2 J=17.5 J
    而杆的重力势能增加量ΔEp=mgsin θ
    故全过程产生的焦耳热Q=WF-ΔEp=7.5 J
    35.(2014·江苏)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层.匀强磁场的磁感应强度大小为B,方向与导轨平面垂直.质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g.求:
    (1)导体棒与涂层间的动摩擦因数μ;
    (2)导体棒匀速运动的速度大小v;
    (3)整个运动过程中,电阻产生的焦耳热Q.
    【答案】 (1)tan θ (2)eq \f(mgRsin θ,B2L2)(3)2mgdsin θ-eq \f(m3g2R2sin2θ,2B4L4)
    【解析】 (1)在绝缘涂层上受力平衡 mgsin θ=μmgcs θ解得 μ=tan θ.
    (2)在光滑导轨上感应电动势 E=Blv 感应电流 I=eq \f(E,R)安培力 F安=BLI 受力平衡 F 安=mgsinθ解得 v=eq \f(mgRsin θ,B2L2)
    (3)摩擦生热 QT=μmgdcs θ
    能量守恒定律 3mgdsin θ=Q+QT+eq \f(1,2)mv2 解得 Q=2mgdsin θ-eq \f(m3g2R2sin θ,2B4L4).
    36.(2014·天津)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B=0.5 T.在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑.然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑.cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2,问
    (1)cd下滑的过程中,ab中的电流方向;
    (2)ab刚要向上滑动时,cd的速度v多大;
    (3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab上产生的热量Q是多少?
    【答案】:(1)由a流向b (2)5 m/s (3)1.3 J
    【解析】 (1)由右手定则可以直接判断出电流是由a流向b.
    (2)开始放置ab刚好不下滑时,ab所受摩擦力为最大静摩擦力,设其为Fmax,有
    Fmax=m1gsin θ①
    设ab刚好要上滑时,cd棒的感应电动势为E,由法拉第电磁感应定律有
    E=BLv②
    设电路中的感应电流为I,由闭合电路欧姆定律有
    I=eq \f(E,R1+R2)③
    设ab所受安培力为F安,有
    F安=ILB④
    此时ab受到的最大静摩擦力方向沿斜面向下,由平衡条件有
    F安=m1gsin θ+Fmax⑤
    综合①②③④⑤式,代入数据解得
    v=5 m/s⑥
    (3)设cd棒的运动过程中电路中产生的总热量为Q总,由能量守恒有
    m2gxsin θ=Q总+eq \f(1,2)m2v2⑦
    又Q=eq \f(R1,R1+R2)Q总⑧ 解得Q=1.3 J
    37.(2014·浙江)某同学设计一个发电测速装置,工作原理如图所示.一个半径为R=0.1 m的圆形金属导轨固定在竖直平面上,一根长为R的金属棒OA,A端与导轨接触良好,O端固定在圆心处的转轴上.转轴的左端有一个半径为r=eq \f(R,3)的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m=0.5 kg的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B=0.5 T.a点与导轨相连,b点通过电刷与O端相连.测量a、b两点间的电势差U可算得铝块速度.铝块由静止释放,下落h=0.3 m时,测得U=0.15 V.(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g取10 m/s2)
    (1)测U时,与a点相接的是电压表的“正极”还是“负极”?
    (2)求此时铝块的速度大小;
    (3)求此下落过程中铝块机械能的损失.
    【答案】(1)正极 (2)2 m/s (3)0.5 J
    【解析】本题考查法拉第电磁感应定律、右手定则等知识和分析综合及建模能力.
    (1)正极
    (2)由电磁感应定律得U=E=eq \f(ΔΦ,Δt)
    ΔΦ=eq \f(1,2)BR2Δθ U=eq \f(1,2)BωR2
    v=rω=eq \f(1,3)ωR
    所以v=eq \f(2U,3BR)=2 m/s
    (3)ΔE=mgh-eq \f(1,2)mv2 ΔE=0.5 J

    相关试卷

    高考物理(2010~2020)真题专项练习 21 近代物理(解析版):

    这是一份高考物理(2010~2020)真题专项练习 21 近代物理(解析版),共22页。

    高考物理(2010~2020)真题专项练习 16 交变电流 (解析版):

    这是一份高考物理(2010~2020)真题专项练习 16 交变电流 (解析版),共20页。

    高考物理(2010~2020)真题专项练习 14 磁场2(解析版):

    这是一份高考物理(2010~2020)真题专项练习 14 磁场2(解析版),共27页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map