高中数学人教版新课标A选修1-13.2导数的计算教学课件ppt
展开1.能够区分极值与最值两个不同的概念.2.掌握在闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)的求法.
假设函数y=f(x),y=g(x),y=h(x)在闭区间[a,b]的图象都是一条连续不断的曲线(如下图所示),观察图象,你认为此类函数在[a,b]上一定能取得最大值与最小值吗?最大值及最小值与极值有什么关系?如何求函数的最值?
[问题1] 这三个函数在[a,b]上一定能取得最大值与最小值吗?[提示1] 能.[问题2] 若y=h(x)在开区间(a,b)上是一条连续不断的曲线,那么它在(a,b)上一定有最值和极值吗?[提示2] 不能.
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,则该函数在[a,b]上一定有_______和________,函数的最值必在极值点或区间端点处取得.
求函数f(x)在[a,b]上的最值可分两种情况进行:1.当函数f(x)单调时:若函数y=f(x)在[a,b]上单调递增,则f(a)为函数的________,f(b)为函数的________;若函数y=f(x)在[a,b]上单调递减,则f(a)为函数的_______,f(b)为函数的_________.
2.当函数f(x)不单调时:(1)求y=f(x)在(a,b)内的___值;(2)将y=f(x)的各____值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.
(3)函数f(x)在闭区间[a,b]上图象连续不断,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能一个也没有,函数的最大值一定不小于它的最小值.
1.给出下列四个命题:①若函数f(x)在[a,b]上有最大值,则这个最大值一定是[a,b]上的极大值;②若函数f(x)在[a,b]上有最小值,则这个最小值一定是[a,b]上的极小值;③若函数f(x)在[a,b]上有最值,则最值一定在x=a或x=b处取得;④若函数f(x)在(a,b)内连续,则f(x)在(a,b)内必有最大值与最小值.其中真命题共有( )A.0个 B.1个C.2个D.3个
2.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10B.-71C.-15D.-22
解析: f′(x)=3x2-6x-9=3(x-3)(x+1).由f′(x)=0得x=3,-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.答案: B
3.f(x)=x-ln x在区间(0,e]上的最小值为________.
求函数f(x)=-x4+2x2+3,x∈[-3,2]上的最值.
方法一:f′(x)=-4x3+4x,即f′(x)=-4x(x+1)(x-1),令f′(x)=0,得x=-1,x=0,x=1.当x变化时,f′(x)及f(x)的变化情况如下表:
求解函数在闭区间上的最值.在熟练掌握求解步骤的基础上,还须注意以下几点:(1)对函数进行准确求导;(2)研究函数的单调性,正确确定极值和区间端点的函数值;(3)比较极值与区间端点函数值的大小.
1.求函数f(x)=x3-3x-1在区间[0,3]上的最大值、最小值.解析: f′(x)=3x2-3=3(x+1)(x-1)令f′(x)=0得x1=1,x2=-1,x变化时,f′(x),f(x)的变化情况如下表
已知函数f(x)=ax3-6ax2+b在[-1,2]上有最大值3,最小值-29,求a,b的值. [思路点拨] 根据导数与单调性,导数与最值之间的关系求解,由于f(x)既有最大值,又有最小值,因此a≠0,要注意对参数的取值情况进行讨论.
上表知,当x=0时,f(x)取得最大值,所以f(0)=b=3.又f(2)=-16a+3,f(-1)=-7a+3,故f(-1)>f(2),所以当x=2时,f(x)取得最小值,即-16a+3=-29,a=2.
由函数的最值来确定参数的问题是利用导数求函数最值的逆向运用,解题时一般采用待定系数法,列出含参数的方程或方程组,从而得出参数的值,这也是方程思想的应用.
2.已知函数f(x)=2x3-6x2+a在[-2,2]上有最小值-37,求a的值并求f(x)在[-2,2]上的最大值.
已知函数f(x)=ax4ln x+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.若对任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.
由不等式恒成立求参的问题,可采用分离参数法,即将参数移至不等式的一端,化成m≥f(x)或m≤f(x)的形式,然后利用导数知识求出函数f(x)的最值,则由结论m≥f(x)max或m≤f(x)min即可求出参数m的取值范围.
【错因】 没有求区间端点处的函数值;连续函数在闭区间上一定有最大值和最小值.求出极值,需要与区间端点处的函数值进行比较才能断定.
人教版新课标A选修1-23.2复数代数形式的四则运算课堂教学课件ppt: 这是一份人教版新课标A选修1-23.2复数代数形式的四则运算课堂教学课件ppt,共32页。PPT课件主要包含了f′x<0,f′x>0,极大值点,极小值点,极大值,极小值,题型一求函数的极值,等价转化思想的应用,所以a=9,故b=-1c=3等内容,欢迎下载使用。
人教版新课标A选修1-23.1数系的扩充和复数的概念示范课ppt课件: 这是一份人教版新课标A选修1-23.1数系的扩充和复数的概念示范课ppt课件,共23页。PPT课件主要包含了知识点导数运算法则,方程思想的应用,ln2-1,x-y+1=0等内容,欢迎下载使用。
高中数学人教版新课标A选修1-2第三章 数系的扩充与复数的引入3.1数系的扩充和复数的概念教课课件ppt: 这是一份高中数学人教版新课标A选修1-2第三章 数系的扩充与复数的引入3.1数系的扩充和复数的概念教课课件ppt,共30页。PPT课件主要包含了构造法的应用,故ab>ba,2+∞,-∞2等内容,欢迎下载使用。