微专题八 图形变换 —2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础
展开
这是一份微专题八 图形变换 —2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础,共2页。试卷主要包含了图形变换等内容,欢迎下载使用。
【知识梳理】
知识点一:视图
三视图:主视图、左视图、俯视图
(1)主视图:从正面看到的图形,称为主视图;
(2)左视图:从左面看到的图形,称为左视图;
(3)俯视图:从上面看到的图形,称为俯视图.
三视图的关系
主视图反映物体的长和高;左视图反映物体的宽和高;俯视图反映物体的长和宽,因此三视图有如下对应关系:
(1)长对正:主视图与俯视图的长度相等,且相互对正;
(2)高平齐:主视图与左视图的高度相等,且相互平齐;
(3)宽相等:俯视图与左视图的宽度相等,且相互平行.
“长对正,高平齐,宽相等”,这“九字令”是阅读和绘制三视图必须遵循的对应关系.
常见几何体的三视图
正方体的三视图都是正方形;
圆柱的三视图有两个是长方形,另一个是圆;
圆锥的三视图中有两个是三角形,另一个是圆;
球的三视图都是圆.
知识点二:投影
中心投影
(1)由同一点(点光源)发出的光线形成的投影叫做中心投影.
(2)中心投影的投影线交于一点.
(3)投影面确定时,物体离点光源越近,影子越大;物体离点光源越远,影子越小.
2. 平行投影
(1)太阳光线可以看成平行光线,由平行光线形成的投影叫做平行投影.
(2)平行投影的投影线相互平行.
(3)不同时刻,物体在太阳光下的影子的大小和方向都改变.
(4)垂直于投影面产生的投影叫做正投影.
知识点三:对称图形
轴对称、轴对称图形
(1)轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么称这两个图形成轴对称.两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.
(2)轴对称图形:如果一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线称为对称轴.对称轴一定为直线.
(3)轴对称图形变换的特征:不改变图形的形状和大小,只改变图形的位置.新旧图形具有对称性.
2. 中心对称、中心对称图形
(1)中心对称:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么这两个图形成中心对称,该点叫做对称中心.
(2)中心对称图形:一个图形绕着某一点旋转180°后能与自身重合,这个图形叫做中心对称图形,该点叫做对称中心.
知识点四:平移与旋转
1. 图形的平移
(1)定义:在平面内,将某个图形沿某个方向移动一定的距离,这样的图形运动称为平移.
(2)特征:①平移后,对应线段相等且平行,对应点所连的线段平行且相等.
②平移后,对应角相等且对应角的两边分别平行,方向相同.
③平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.
图形的旋转
(1)定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.
(2)特征:图形旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同角度;注意每对对应点与旋转中心的连线所成的角度都是旋转角,旋转角都相等;对应点到旋转中心的距离相等.
相关试卷
这是一份考点02 根式-2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础,文件包含考点02根式2021年《三步冲刺中考•数学》广东专版之第1步小题夯基础原卷版doc、考点02根式2021年《三步冲刺中考•数学》广东专版之第1步小题夯基础解析版doc等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
这是一份微专题六 圆—2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础,共3页。
这是一份微专题三 函数—2021年《三步冲刺中考•数学》(广东专版)之第1步小题夯基础,共5页。