初中数学青岛九下期末数学试卷(含答案)
展开
这是一份青岛版本册综合测试题,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
期末数学试卷 一、选择题1.下列函数中,一定是二次函数是( )A.y=ax2+bx+c B.y=x(﹣x+1) C.y=(x﹣1)2﹣x2 D.y=2.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为( )A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣253.下列事件中,是随机事件的是( )A.通常温度降到0℃以下,纯净水结冰 B.随意翻到一本书的某页,这页的页码是偶数 C.我们班里有46个人,必有两个人是同月生的 D.一个不透明的袋中有2个红球和1个白球,它们除了颜色外都相同,从中任意摸出一个球,摸到白球比摸到红球的可能性大4.下列说法正确的是( )A.投掷三枚硬币正好三个都正面朝上是不可能事件 B.打开电视正在播新闻联播是随机事件 C.随机投掷一枚硬币正面朝上的概率是50%,是指将一枚硬币随机投掷10次,一定有5次正面朝上 D.确定事件的发生概率大于0而小于15.如图,为正方体展开图的是( )A. B. C. D.6.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度( )A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m7.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为( )A.1 B.﹣1 C.2 D.﹣28.如图,在平面直角坐标系xOy中,直线y=k1x+2与y轴交于点C,与反比例函数y=在第一象限内的图象交于点B,连接BO,若S△OBC=1,tan∠BOC=,则k2的值是( )A.﹣3 B.1 C.2 D.39.二次函数y=x2+bx+c的图象经过点(1,﹣1),则b+c的值是( )A.﹣1 B.3 C.﹣4 D.﹣210.如图,二次函败y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论:①abc<0;②2a+b=0;③3a+2c>0;④对于任意x均有ax2﹣a+bx﹣b≥0,正确个数有( )A.1个 B.2个 C.3个 D.4个11.如图是抛物线形拱桥的剖面图,拱底宽12m,拱高8m,设计警戒水位为6m,当拱桥内水位达到警戒水位时,拱桥内的水面宽度是( )A.3m B.6m C.3m D.6m12.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为( )A.193 B.194 C.195 D.196 二、填空题13.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于 米.14.抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为 .15.一个几何体的三视图如图所示,则这个几何体的表面积为 .16.如图,抛物线y=ax2+bx+4经过点A(﹣3,0),点B在抛物线上,CB∥x轴,且AB平分∠CAO.则此抛物线的解析式是 .17.如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE= . 评卷人 得 分 三、解答题18.某中学对本校初2017届500名学生中中考参加体育加试测试情况进行调查,根据男生1000米及女生800米测试成绩整理,绘制成不完整的统计图,(图①,图②),根据统计图提供的信息,回答问题:(1)该校毕业生中男生有 人;扇形统计图中a= ;(2)补全条形统计图;扇形统计图中,成绩为10分的所在扇形的圆心角是 度;(3)若500名学生中随机抽取一名学生,这名学生该项成绩在8分及8分以下的概率是多少?19.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)20.如图,AB和DE是直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB的影子长时,同时测量出EF=6m,计算DE的长.21.如图是一个几何体的表面展开图,图中的数字表示相应的棱的长度(单位:cm)(1)写出该几何体的名称;(2)计算该几何体的表面积.22.为了解同学们的身体发育情况,学校体卫办公室对七年级全体学生进行了身高测量(精确到1cm),并从中抽取了部分数据进行统计,请根据尚未完成的频数分布表和频数分布直方图解答下列问题:频率分布表分组频数百分比144.5~149.524%149.5~154.536%154.5~159.5a16%159.5~164.51734%164.5~169.5bn%169.5~174.5510%174.5~179.536%(1)求a、b、n的值;(2)补全频数分布直方图;(3)学校准备从七年级学生中选拔护旗手,要求身高不低于170cm,如果七年级有学生350人,护旗手的候选人大概有多少?23.如图,四边形ABCD是平行四边形,AB=c,AC=b,BC=a,抛物线y=ax2+bx﹣c与x轴的一个交点为(m,0).(1)若四边形ABCD是正方形,求抛物线y=ax2+bx﹣c的对称轴;(2)若m=c,ac﹣4b<0,且a,b,c为整数,求四边形ABCD的面积.24.有一种市场均衡模型是用一次函数和二次函数来刻化的:根据市场调查,某种商品的市场需求量y1(吨)与单价x(百元)之间的关系可看作是二次函数y1=4﹣x2,该商品的市场供应量y2(吨)与单价x(百元)之间的关系可看作是一次函数y2=4x﹣1.(1)当需求量等于供应量时,市场达到均衡.此时的单价x(百元)称为均衡价格,需求量(供应量)称为均衡数量.求所述市场均衡模型的均衡价格和均衡数量.(2)当该商品单价为50元时,此时市场供应量与需求量相差多少吨?(3)根据以上信息分析,当该商品①供不应求②供大于求时,该商品单价分别会在什么范围内?
参考答案 一.选择题1.【解答】解:A、当a=0时,二次项系数等于0,不是二次函数,故选项错误;B、是二次函数,故选项正确;C、是一次函数,故选项错误;D、不是整式,不是二次函数,故选项错误;故选:B.2.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.3.【解答】解:A、通常温度降到0℃以下,纯净水结冰是必然事件;B、随意翻到一本书的某页,这页的页码是偶数是随机事件;C、我们班里有46个人,必有两个人是同月生的是必然事件;D、一个不透明的袋中有2个红球和1个白球,它们除了颜色外都相同,从中任意摸出一个球,摸到白球比摸到红球的可能性大是不可能事件;故选:B.4.【解答】解:A、投掷三枚硬币正好三个都正面朝上是随机事件,故此选项错误;B、打开电视正在播新闻联播是随机事件,正确;C、随机投掷一枚硬币正面朝上的概率是50%,是指将一枚硬币随机投掷10次,不一定有5次正面朝上,故此选项错误;D、确定事件的发生概率等于0或等于1,故此选项错误;故选:B.5.【解答】解:A、折叠后,与原正方体不符,故此选项错误;B、折叠后,与原正方体不符,故此选项错误;C、折叠后,与原正方体不符,故此选项错误;D、折叠后与原正方体相同,与原正方体符合,故此选项正确.故选:D.6.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.7.【解答】解:由于点A在反比例函数y=的图象上,则S△AOB=|k|=1,k=±2;又由于函数的图象在第二象限,故k<0,则k=﹣2.故选:D.8.【解答】解:∵直线y=k1x+2与x轴交于点A,与y轴交于点C,∴点C的坐标为(0,2),∴OC=2,过B作BD⊥y轴于D,∵S△OBC=1,∴BD=1,∵tan∠BOC=,∴=,∴OD=3,∴点B的坐标为(1,3),∵反比例函数y=在第一象限内的图象交于点B,∴k2=1×3=3.故选:D.9.【解答】解:∵二次函数y=x2+bx+c的图象经过点(1,﹣1),∴把点(1,﹣1)代入函数式,得﹣1=1+b+c,即b+c=﹣2,故选:D.10.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线与x轴的交点的坐标分别为(﹣1,0),(3,0),∴抛物线的对称轴为直线x=1,即﹣=1,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=﹣1时,y=0,∴a﹣b+c=0,即a+2a+c=0,∴c=﹣3a,∴3a+2c=3a﹣6a=﹣3a<0,所以③错误;∵x=1时,y的值最小,∴对于任意x,a+b+c≤ax2+bx+c,即ax2﹣a+bx﹣b≥0,所以④正确.故选:B.11.【解答】解:如图建立直角坐标系,设抛物线的解析式为y=ax2+c,由题意,得,解得:,∴y=﹣x2+8;当y=6时,即6=﹣x2+8,解得:x=±3,∴拱桥内的水面宽度=6m,故选:B.12.【解答】解:∵AB=m米,∴BC=(28﹣m)米.则S=AB•BC=m(28﹣m)=﹣m2+28m.即S=﹣m2+28m(0<m<28).由题意可知,,解得6≤m≤13.∵在6≤m≤13内,S随m的增大而增大,∴当m=13时,S最大值=195,即花园面积的最大值为195m2.故选:C. 二.填空题13.【解答】解:作DH⊥AB于H,如图,则DH=BC=8m,CD=BH=2m,根据题意得∠ADH=45°,所以△ADH为等腰直角三角形,所以AH=DH=8m,所以AB=AH+BH=8m+2m=10m.故答案为10.14.【解答】解:∵,得若b>2a,即a=2,3,4,5,6 b=4,5,6符合条件的数组有(2,5)(2,6)共有2个,若b<2a,符合条件的数组有(1,1)共有1个,∴概率p==故答案为:15.【解答】解:主视图的面积=10×60+50×20=1600;左视图的面积=40×(50+10)=2400;俯视图的面积=40×(20+20+20)=2400;∴这个几何体的表面积=2(1600+2400+2400)=12800,故答案为:12800.16.【解答】解:∵抛物线y=ax2+bx+4与y轴交于点C,∴C(0,4),∴OC=4,∵A(﹣3,0),∴OA=3,∴AC=5,∵AB平分∠CAO,∴∠BAC=∠BAO,∵BC∥x轴,∴∠CBA=∠BAO,∴∠BAC=∠CBA,∴CB=CA=5,∴B(5,4).把A(﹣3,0)、B(5,4)代入y=ax2+bx+4,得,解得,∴抛物线解析式为y=﹣x2+x+4.故答案为y=﹣x2+x+4.17.【解答】解:由题意得:OC=3则:以下各点的坐标分别为:A(﹣1,0)、B(3,0)、C(0,﹣3),直线y=﹣x+1与y轴交于点D,知D坐标为(0,1),易证△ACO≌△DBO(SAS),∴∠DBO=∠ACO,而∠ABC=∠ACB=45°,∴∠DBC=∠ACB,则二次函数的表达式为y=x2﹣2x﹣3,则顶点E的坐标为(1,﹣4),由点B、E坐标可知,BE所在的直线的kBE=2,过点C作OF∥BE,则∠FCB=∠CBE,∴∠DBC﹣∠CBE=∠ACF,则直线CF所在的方程的k=kBE=2,方程为y=2x﹣3,∴点F的坐标为(,0),在△ACF中,由A、C、F的坐标可求出:则AC=,CF=,AF=,过点A作AH⊥CF,设:CH=x,则根据AH2=AC2﹣CH2=AF2﹣FH2,解得:x=,则cos∠ACH==,∴∠ACH=45°,∴∠DBC﹣∠CBE=∠ACH=45°,故答案为45°. 三.解答题18.【解答】解:(1)校毕业生中男生有:20+40+60+180=300人.∵×100%=12%,∴a=12.故答案为300,12. (2)由题意b=1﹣10%﹣12%﹣16%=62%,∴成绩为10分的所在扇形的圆心角是360°×62%=223.2°.500×62%﹣180=130人,∵500×10%=50,∴女生人数=50﹣20=30人. 条形图如图所示: (3)这名学生该项成绩在8分及8分以下的概率是=.19.【解答】解:(1)如图所示:; (2)表面积=2(8×5+8×2+5×2)+4×π×6=2(8×5+8×2+5×2)+4×3.14×6=207.36(cm2).20.【解答】解:(1)如图所示:EF即为所求; (2)由题意可得:=,解得:DE=10,答:DE的长为10m.21.【解答】解:(1)该几何体的名称是长方体;(2)(20×15+20×10+15×10)×2=(300+200+150)×2=650×2=1300(cm2).答:该几何体的表面积是1300cm2.22.【解答】解:(1)总人数=2÷4%=50(人),a=50×16%=8,b=50﹣2﹣3﹣8﹣17﹣5﹣3=12,n=1﹣4%﹣6%﹣16%﹣34%﹣10%﹣6%=24%.(2)频数分布直方图:(3)350×16%=56(人),护旗手的候选人大概有56人.23.【解答】解:(1)∵四边形ABCD是正方形,∴AB=BC,AC=AB,即b=a=c,∴抛物线y=ax2+bx﹣c的对称轴为直线x=﹣=﹣=﹣;(2)∵m=c,∴抛物线y=ax2+bx﹣c与x轴的一个交点为(c,0).把(c,0)代入y=ax2+bx﹣c得a•c2+bc﹣c=0,∴ac+4b﹣16=0,∴ac=16﹣4b,∵ac﹣4b<0,∴16﹣4b﹣4b<0,解得b>2,对于方程ax2+bx﹣c=0,∵△=b2+4ac=b2+4(16﹣4b)=(b﹣8)2,∴x=,解得x1=﹣,x2=,∴抛物线与x轴的交点为(﹣,0),(,0),而m=c>0,∴>0,解得b<4∴2<b<4,而b为整数,∴b=3,∴ac=16﹣4×3=4,而a、c为整数,∴a=1,c=4(舍去)或a=2,b=2,即平行四边形ABCD中,AB=2,BC=2,AC=3,∴四边形ABCD为菱形,连接BD交AC于O,则OA=OC=,BO=DO,在Rt△BOC中,BO==,∴BD=2OB=,∴四边形ABCD的面积=×3×=.24.【解答】解:(1)令y1=y2,得到4﹣x2=4x﹣1,解得x=1或﹣5(舍弃),答:所述市场均衡模型的均衡1百元和均衡数量为3吨. (2)当x=0.5时,y1=3.75,y2=1,y2﹣y1=﹣2.75,答:此时市场供应量与需求量相差﹣2.75吨. (3)①供不应求时,由题意:y1>y2,观察图象可知<x<1,②供大于求时,y1<y2,观察图象可知1<x<2.
相关试卷
这是一份初中数学青岛七下期中数学试卷,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学青岛八下期中数学试卷,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学青岛八下期末数学试卷,共14页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。