|试卷下载
搜索
    上传资料 赚现金
    2019年江苏省苏州市高新区中考数学一模试卷(含答案解析)
    立即下载
    加入资料篮
    2019年江苏省苏州市高新区中考数学一模试卷(含答案解析)01
    2019年江苏省苏州市高新区中考数学一模试卷(含答案解析)02
    2019年江苏省苏州市高新区中考数学一模试卷(含答案解析)03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2019年江苏省苏州市高新区中考数学一模试卷(含答案解析)

    展开
    这是一份2019年江苏省苏州市高新区中考数学一模试卷(含答案解析),共21页。试卷主要包含了五个新篮球的质量,下列图形是轴对称图形的有,下列不等式变形正确的是,已知等内容,欢迎下载使用。

    1.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( )
    A.﹣2.5B.﹣0.6C.+0.7D.+5
    2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )
    A.B.
    C.D.
    3.我县人口约为530060人,用科学记数法可表示为( )
    A.53006×10人B.5.3006×105人
    C.53×104人D.0.53×106人
    4.下列图形是轴对称图形的有( )
    A.2个B.3个C.4个D.5个
    5.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是( )
    A.AB=36mB.MN∥ABC.MN=CBD.CM=AC
    6.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )
    A.60°B.65°C.70°D.75°
    7.在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是( )
    A.22个、20个B.22个、21个C.20个、21个D.20个、22个
    8.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是( )
    A.B.
    C.D.
    9.下列不等式变形正确的是( )
    A.由 a>b,得 a﹣2<b﹣2B.由 a>b,得|a|>|b|
    C.由 a>b,得﹣2a<﹣2bD.由 a>b,得 a2>b2
    10.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标为( )
    A.(5,8)B.(5,10)C.(4,8)D.(3,10)
    二.填空题(共8小题,满分24分,每小题3分)
    11.函数y=中,自变量x的取值范围是 .
    12.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2= .
    13.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是 .
    14.已知a2+a﹣1=0,则a3+2a2+2018= .
    15.如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是: .
    16.一组按规律排列的式子:,﹣,,﹣,…(a≠0),其中第10个式子是 .
    17.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是 .
    18.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,则a的值为 .
    三.解答题(共10小题,满分96分)
    19.(10分)(1)计算:(﹣1)(+1)+(﹣1)0﹣(﹣)﹣2.
    (2)化简: .
    (3)解方程:.
    20.(8分)解不等式组:,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.
    21.(8分)一艘轮船由南向北航行,如图,在A处测得小岛P在北偏西15°方向上,两个小时后,轮船在B处测得小岛P在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?
    22.(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.
    征文比赛成绩频数分布表
    请根据以上信息,解决下列问题:
    (1)征文比赛成绩频数分布表中c的值是 ;
    (2)补全征文比赛成绩频数分布直方图;
    (3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
    23.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.
    (1)小礼诵读《论语》的概率是 ;(直接写出答案)
    (2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.
    24.(8分)已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E,如果∠BAD=30°,且BE=2,求弦CD的长.
    25.(9分)已知:如图,正方形ABCD,BM、DN分别是正方形的两个外角平分线,∠MAN=45°,将∠MAN绕着正方形的顶点A旋转,边AM、AN分别交两条角平分线于点M、N,联结MN.
    (1)求证:△ABM∽△NDA;
    (2)联结BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.
    26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:
    已知日销售量y是销售价x的一次函数.
    (1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;
    (2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?
    27.(13分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.
    (1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;
    (2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.
    请从下列A、B两题中任选一题作答,我选择 题.
    A:①求线段AD的长;
    ②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
    B:①求线段DE的长;
    ②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    28.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
    (1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
    (2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
    (3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
    2019年江苏省苏州市高新区文昌实验中学中考数学一模试卷
    参考答案与试题解析
    一.选择题(共10小题,满分30分,每小题3分)
    1.【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.
    【解答】解:|+5|=5,|﹣3.5|=3.5,|+0.7|=0.7,|﹣2.5|=2.5,|﹣0.6|=0.6,
    ∵5>3.5>2.5>0.7>0.6,
    ∴最接近标准的篮球的质量是﹣0.6,
    故选:B.
    【点评】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.
    2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.
    【解答】解:∵主视图和左视图都是长方形,
    ∴此几何体为柱体,
    ∵俯视图是一个圆,
    ∴此几何体为圆柱,
    因此图A是圆柱的展开图.
    故选:A.
    【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.
    3.【分析】根据科学记数法的定义及表示方法进行解答即可.
    【解答】解:∵530060是6位数,
    ∴10的指数应是5,
    故选:B.
    【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.
    4.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
    【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;
    图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
    图(3)有二条对称轴,是轴对称图形,符合题意;
    图(3)有五条对称轴,是轴对称图形,符合题意;
    图(3)有一条对称轴,是轴对称图形,符合题意.
    故轴对称图形有4个.
    故选:C.
    【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    5.【分析】根据三角形的中位线定理即可判断;
    【解答】解:∵CM=MA,CNB,
    ∴MN∥AB,MN=AB,
    ∵MN=18m,
    ∴AB=36m,
    故A、B、D正确,
    故选:C.
    【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.
    6.【分析】由旋转性质知△ABC≌△DEC,据此得∠ACB=∠DCE=30°、AC=DC,继而可得答案.
    【解答】解:由题意知△ABC≌△DEC,
    则∠ACB=∠DCE=30°,AC=DC,
    ∴∠DAC===75°,
    故选:D.
    【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.
    7.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    【解答】解:在这一组数据中20出现了3次,次数最多,故众数是20;
    把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,
    处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.
    故选:C.
    【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    8.【分析】根据小李距家3千米,路程随着时间的增大而增大确定合适的函数图象即可.
    【解答】解:∵小李距家3千米,
    ∴离家的距离随着时间的增大而增大,
    ∵途中在文具店买了一些学习用品,
    ∴中间有一段离家的距离不再增加,
    综合以上C符合,
    故选:C.
    【点评】本题考查了函数图象,比较简单,了解横、总坐标分别表示什么是解题的关键.
    9.【分析】根据不等式的性质进行分析判断.
    【解答】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a﹣2>b﹣2,故本选项错误;
    B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;
    C、在不等式a>b的两边同时乘以﹣2,不等式的符号方向改变,即﹣2a<﹣2b成立,故本选项正确;
    D、当a>b>0时,不等式a2>b2成立,故本选项错误;
    故选:C.
    【点评】考查了不等式的性质:
    ①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;
    ②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;
    ③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
    10.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标即可.
    【解答】解:过点C作CF⊥x轴于点F,
    ∵OB•AC=160,A点的坐标为(10,0),
    ∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,
    ∴CF===8,
    在Rt△OCF中,
    ∵OC=10,CF=8,
    ∴OF===6,
    ∴C(6,8),
    ∵点D是线段AC的中点,
    ∴D点坐标为(,),即(8,4),
    ∵双曲线y=(x>0)经过D点,
    ∴4=,即k=32,
    ∴双曲线的解析式为:y=(x>0),
    ∵CF=8,
    ∴直线CB的解析式为y=8,
    ∴,
    解得:,
    ∴E点坐标为(4,8).
    【点评】此题考查了反比例函数图象上点的坐标特征,菱形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.
    二.填空题(共8小题,满分24分,每小题3分)
    11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.
    【解答】解:根据题意,得:,
    解得:x≤2且x≠﹣2,
    故答案为:x≤2且x≠﹣2.
    【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    12.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;
    【解答】解:根据题意得x1+x2=2,x1x2=﹣5,
    x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.
    故答案为﹣1.
    【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.
    13.【分析】根据题意,使用列举法可得从4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.
    【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,
    而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;
    故其概率为:.
    【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.
    14.【分析】将已知条件变形为a2=1﹣a、a2+a=1,然后将代数式a3+2a2+2018进一步变形进行求解.
    【解答】解:∵a2+a﹣1=0,
    ∴a2=1﹣a、a2+a=1,
    ∴a3+2a2+3,
    =a•a2+2(1﹣a)+2018,
    =a(1﹣a)+2﹣2a+2020,
    =a﹣a2﹣2a+2020,
    =﹣a2﹣a+2020,
    =﹣(a2+a)+2020,
    =﹣1+2020,
    =2019.
    故答案为:2019.
    【点评】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.
    15.【分析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是120°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.
    【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.
    ∵六边形ABCDEF的六个角都是120°,
    ∴六边形ABCDEF的每一个外角的度数都是60°.
    ∴△APF、△BGC、△DHE、△GHP都是等边三角形.
    ∴GC=BC=3cm,DH=DE=2cm.
    ∴GH=3+3+2=8cm,FA=PA=PG﹣AB﹣BG=8﹣1﹣3=4cm,EF=PH﹣PF﹣EH=8﹣4﹣2=2cm.
    ∴六边形的周长为1+3+3+2+4+2=15cm.
    故答案为:15cm.
    【点评】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.
    16.【分析】式子的符号:第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a的指数是:序号的3倍减去1,据此即可求解.
    【解答】解:∵=(﹣1)1+1•,
    ﹣=(﹣1)2+1•,
    =(﹣1)3+1•,

    第10个式子是(﹣1)10+1•=.
    故答案是:.
    【点评】本题主要考查了式子的特征,正确理解式子的规律是解题的关键.
    17.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.
    【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
    ∵∠CAD+∠ACD=90°,
    ∠BCE+∠ACD=90°,
    ∴∠CAD=∠BCE,
    在等腰直角△ABC中,AC=BC,
    在△ACD和△CBE中,

    ∴△ACD≌△CBE(AAS),
    ∴CD=BE=1,
    ∴DE=3,
    ∴tan∠α=.
    故答案为:.
    【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.
    18.【分析】根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.
    【解答】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2﹣a+3,
    ∴该函数的对称轴为直线x=﹣1,
    ∵当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,
    ∴a<0,当x=﹣1时,y=7,
    ∴7=a(x+1)2+3a2﹣a+3,
    解得,a1=﹣1,a2=(舍去),
    故答案为:﹣1.
    【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.
    三.解答题(共10小题,满分96分)
    19.【分析】(1)根据零指数幂和负整数指数幂的意义得到原式=3﹣1+1﹣9,然后进行加减运算;
    (2)先把分母因式分解和除法运算化为乘法运算,然后约分后进行同分母的加法运算;
    (3)先去分母得到整式方程,再解整式方程,然后检验即可.
    【解答】解:(1)原式=3﹣1+1﹣9
    =﹣6;
    (2)原式=+•
    =+
    =;
    (4)x(x+2)+6(x﹣2)=(x﹣2)(x+2),
    x2+2x+6x﹣12=x2﹣4,
    x=1,
    经检验,x=1是原方程的解.
    【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.
    20.【分析】先求出两个不等式的解集,再求其公共解,即可求得正整数解.
    【解答】解:
    解不等式①,得x<4,
    解不等式②,得x≥﹣2,
    所以,原不等式组的解集是﹣2≤x<4
    在数轴上表示如下:
    所以,原不等式组的正整数解是1,2,3.
    【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    21.【分析】作PD⊥AB交AB延长线于D点,依据直角三角形的性质求得PD的长,即可得出结论.
    【解答】解:如图,作PD⊥AB交AB延长线于D点,
    ∵∠PBC=30°,
    ∴∠PAB=15°,
    ∴∠APB=∠PBC﹣∠PAB=15°,
    ∴PB=AB=20×2=40 (海里),
    在Rt△BPD中,
    ∴PD=PB=20(海里),
    ∵20>18,
    ∴不会触礁.
    【点评】此题考查了等腰三角形的判定与性质,三角形的外角性质,以及含30°直角三角形的性质,其中轮船有没有危险由PD的长与18比较大小决定.
    22.【分析】(1)依据1﹣0.38﹣0.32﹣0.1,即可得到c的值;
    (2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;
    (3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.
    【解答】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,
    故答案为:0.2;
    (2)10÷0.1=100,
    100×0.32=32,100×0.2=20,
    补全征文比赛成绩频数分布直方图:
    (3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).
    【点评】本题考查了频数(率)分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    23.【分析】(1)直接利用概率公式计算;
    (2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.
    【解答】解:(1)小红诵读《论语》的概率=;
    故答案为.
    (2)画树状图为:
    共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,
    所以小红和小亮诵读两个不同材料的概率==.
    【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    24.【分析】连接OD,设⊙O的半径为r,则OE=r﹣2,再根据圆周角定理得出∠DOE=60°,由直角三角形的性质可知OD=2OE,由此可得出r的长,在Rt△OED中根据勾股定理求出DE的长,进而可得出结论.
    【解答】解:连接OD,设⊙O的半径为r,则OE=r﹣2,
    ∵∠BAD=30°,
    ∴∠DOE=60°,
    ∵CD⊥AB,
    ∴CD=2DE,∠ODE=30°,
    ∴OD=2OE,即r=2(r﹣2),解得r=4;
    ∴OE=4﹣2=2,
    ∴DE===2,
    ∴CD=2DE=4.
    【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.
    25.【分析】(1)由正方形ABCD,BM、DN分别是正方形的两个外角平分线,可证得∠ABM=∠ADN=135°,又由∠MAN=45°,可证得∠BAM=∠AND=45°﹣∠DAN,即可证得△ABM∽△NDA;
    (2)由四边形BMND为矩形,可得BM=DN,然后由△ABM∽△NDA,根据相似三角形的对应边成比例,可证得BM2=AB2,继而求得答案.
    【解答】(1)证明:∵四边形ABCD是正方形,
    ∴∠ABC=∠ADC=∠BAD=90°,
    ∵BM、DN分别是正方形的两个外角平分线,
    ∴∠ABM=∠ADN=135°,
    ∵∠MAN=45°,
    ∴∠BAM=∠AND=45°﹣∠DAN,
    ∴△ABM∽△NDA;
    (2)解:∵四边形BMND为矩形,
    ∴BM=DN,
    ∵△ABM∽△NDA,
    ∴=,
    ∴BM2=AB2,
    ∴BM=AB,
    ∴∠BAM=∠BMA==22.5°.
    【点评】此题考查了相似三角形的判定与性质、正方形的性质以及矩形的性质.注意能证得当四边形BMND为矩形时,△ABM是等腰三角形是难点.
    26.【分析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;
    (2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.
    【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,

    解得,,
    即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;
    (2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),
    即当每件产品的销售价定为35元时,此时每日的销售利润是125元.
    【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.
    27.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;
    (2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;
    ②分三种情况利用方程的思想即可得出结论;
    B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;
    ②先判断出∠APC=90°,再分情况讨论计算即可.
    【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,
    ∴A(4,0),C(0,8),
    ∴OA=4,OC=8,
    ∵AB⊥x轴,CB⊥y轴,∠AOC=90°,
    ∴四边形OABC是矩形,
    ∴AB=OC=8,BC=OA=4,
    在Rt△ABC中,根据勾股定理得,AC==4,
    故答案为:8,4,4;
    (2)A、①由(1)知,BC=4,AB=8,
    由折叠知,CD=AD,
    在Rt△BCD中,BD=AB﹣AD=8﹣AD,
    根据勾股定理得,CD2=BC2+BD2,
    即:AD2=16+(8﹣AD)2,
    ∴AD=5,
    ②由①知,D(4,5),
    设P(0,y),
    ∵A(4,0),
    ∴AP2=16+y2,DP2=16+(y﹣5)2,
    ∵△APD为等腰三角形,
    ∴Ⅰ、AP=AD,
    ∴16+y2=25,
    ∴y=±3,
    ∴P(0,3)或(0,﹣3)
    Ⅱ、AP=DP,
    ∴16+y2=16+(y﹣5)2,
    ∴y=,
    ∴P(0,),
    Ⅲ、AD=DP,25=16+(y﹣5)2,
    ∴y=2或8,
    ∴P(0,2)或(0,8).
    B、①、由A①知,AD=5,
    由折叠知,AE=AC=2,DE⊥AC于E,
    在Rt△ADE中,DE==,
    ②、∵以点A,P,C为顶点的三角形与△ABC全等,
    ∴△APC≌△ABC,或△CPA≌△ABC,
    ∴∠APC=∠ABC=90°,
    ∵四边形OABC是矩形,
    ∴△ACO≌△CAB,此时,符合条件,点P和点O重合,
    即:P(0,0),
    如图3,
    过点O作ON⊥AC于N,
    易证,△AON∽△ACO,
    ∴,
    ∴,
    ∴AN=,
    过点N作NH⊥OA,
    ∴NH∥OA,
    ∴△ANH∽△ACO,
    ∴,
    ∴,
    ∴NH=,AH=,
    ∴OH=,
    ∴N(,),
    而点P2与点O关于AC对称,
    ∴P2(,),
    同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),
    即:满足条件的点P的坐标为:(0,0),(,),(﹣,).
    【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.
    28.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;
    (2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;
    (3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.
    【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),
    ∴a+a+b=0,即b=﹣2a,
    ∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,
    ∴抛物线顶点D的坐标为(﹣,﹣);
    (2)∵直线y=2x+m经过点M(1,0),
    ∴0=2×1+m,解得m=﹣2,
    ∴y=2x﹣2,
    则,
    得ax2+(a﹣2)x﹣2a+2=0,
    ∴(x﹣1)(ax+2a﹣2)=0,
    解得x=1或x=﹣2,
    ∴N点坐标为(﹣2,﹣6),
    ∵a<b,即a<﹣2a,
    ∴a<0,
    如图1,设抛物线对称轴交直线于点E,
    ∵抛物线对称轴为x=﹣=﹣,
    ∴E(﹣,﹣3),
    ∵M(1,0),N(﹣2,﹣6),
    设△DMN的面积为S,
    ∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,
    (3)当a=﹣1时,
    抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,
    有,
    ﹣x2﹣x+2=﹣2x,
    解得:x1=2,x2=﹣1,
    ∴G(﹣1,2),
    ∵点G、H关于原点对称,
    ∴H(1,﹣2),
    设直线GH平移后的解析式为:y=﹣2x+t,
    ﹣x2﹣x+2=﹣2x+t,
    x2﹣x﹣2+t=0,
    △=1﹣4(t﹣2)=0,
    t=,
    当点H平移后落在抛物线上时,坐标为(1,0),
    把(1,0)代入y=﹣2x+t,
    t=2,
    ∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.
    【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.
    分数段
    频数
    频率
    60≤m<70
    38
    0.38
    70≤m<80
    a
    0.32
    80≤m<90
    b
    c
    90≤m≤100
    10
    0.1
    合计
    1
    x/元

    15
    20
    25

    y/件

    25
    20
    15

    相关试卷

    2023年江苏省苏州市高新区中考数学二模试卷(含解析): 这是一份2023年江苏省苏州市高新区中考数学二模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年江苏省苏州市高新区中考数学一模试卷(教师版): 这是一份2022年江苏省苏州市高新区中考数学一模试卷(教师版),共25页。试卷主要包含了五个新篮球的质量,下列图形是轴对称图形的有,下列不等式变形正确的是,已知等内容,欢迎下载使用。

    2022年江苏省苏州市高新区中考数学最后一模试卷含解析: 这是一份2022年江苏省苏州市高新区中考数学最后一模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如果,那么代数式的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2019年江苏省苏州市高新区中考数学一模试卷(含答案解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map