|教案下载
终身会员
搜索
    上传资料 赚现金
    2021年沪科版九年级数学下册 24.2 第2课时 垂径分弦 教案设计
    立即下载
    加入资料篮
    2021年沪科版九年级数学下册 24.2 第2课时 垂径分弦 教案设计01
    2021年沪科版九年级数学下册 24.2 第2课时 垂径分弦 教案设计02
    还剩2页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第24章 圆24.2 圆的基本性质24.2.2 垂径定理第2课时教案及反思

    展开
    这是一份数学九年级下册第24章 圆24.2 圆的基本性质24.2.2 垂径定理第2课时教案及反思,共4页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    第2课时 垂径分弦





    1.理解并掌握垂径定理及其推论,并能应用其解决一些简单的计算和证明问题(重点,难点);


    2.认识垂径定理及其推论在实际问题中的应用,会用添加辅助线的方法解决实际问题(难点).











    一、情境导入





    你知道赵州桥吗?它又名“安济桥”,位于河北省赵县,是我国现存的著名的古代石拱桥,距今已有1400多年了,是隋代大业年间(公元605~618年)由著名匠师李春建造的,是我国古代人民勤劳和智慧的结晶.


    它的主桥拱是圆弧形,全长50.82米,桥宽约10米,跨度37.4米,拱高7.2米,是当今世界上跨径最大、建造最早的单孔敞肩石拱桥.你知道主桥拱的圆弧所在圆的半径是多少吗?


    二、合作探究


    探究点一:垂径定理及应用


    【类型一】 利用垂径定理求线段长





    如图所示,⊙O的直径AB垂直弦CD于点P,且P是半径OB的中点,CD=6cm,则直径AB的长是( )


    A.2eq \r(3)cm B.3eq \r(2)cm


    C.4eq \r(2)cm D.4eq \r(3)cm


    解析:∵直径AB⊥DC,CD=6cm,∴DP=3cm.连接OD,∵P是OB的中点,设OP为x,则OD为2x,在Rt△DOP中,根据勾股定理列方程32+x2=(2x)2,解得x=eq \r(3).∴OD=2eq \r(3)cm,∴AB=4eq \r(3)cm.故选D.


    方法总结:我们常常连接半径,利用半径、弦、垂直于弦的直径构造出直角三角形,然后应用勾股定理解决问题.


    变式训练:见《学练优》本课时练习“课堂达标训练”第2题


    【类型二】 垂径定理的实际应用





    如图,一条公路的转弯处是一段圆弧(图中的eq \(AB,\s\up8(︵))),点O是这段弧的圆心,C是eq \(AB,\s\up8(︵))上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是________m.


    解析:本题考查垂径定理的应用,∵OC⊥AB,AB=300m,∴AD=150m.设半径为R,在Rt△ADO中,根据勾股定理可列方程R2=(R-50)2+1502,解得R=250.故答案为250.


    方法总结:将实际问题转化为数学问题,再利用我们学过的垂径定理、勾股定理等知识进行解答.


    变式训练:见《学练优》本课时练习“课堂达标训练”第7题


    【类型三】 动点问题








    如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.


    解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.





    解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=eq \f(1,2)AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=eq \r(OA2-AD2)=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.


    方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.


    变式训练:见《学练优》本课时练习“课后巩固提升”第5题


    探究点二:垂径定理的推论的应用


    【类型一】 利用垂径定理的推论求角


    如图所示,⊙O的弦AB、AC的夹角为50°,M、N分别是eq \(AB,\s\up8(︵))、eq \(AC,\s\up8(︵))的中点,则∠MON的度数是( )





    A.100° B.110° C.120° D.130°


    解析:已知M、N分别是eq \(AB,\s\up8(︵))、eq \(AC,\s\up8(︵))的中点,由“平分弧的直径垂直平分弧所对的弦”得OM⊥AB、ON⊥AC,所以∠AEO=∠AFO=90°,而∠BAC=50°,由四边形内角和定理得∠MON=360°-∠AEO-∠AFO-∠BAC=360°-90°-90°-50°=130°.故选D.


    变式训练:见《学练优》本课时练习“课后巩固提升”第4题


    【类型二】 利用垂径定理的推论求边


    如图,⊙O的直径CD过弦AB的中点E,且CE=2,DE=8,则AB的长为( )





    A.9 B.8 C.6 D.4


    解析:∵CE=2,DE=8,∴CD=10,∴OB=OC=5,OE=5-2=3.∵直径CD过弦AB的中点E,∴CD⊥AB,∴AE=BE.在Rt△OBE中,∵OE=3,OB=5,∴BE=eq \r(OB2-OE2)=4,∴AB=2BE=8.故选B.


    方法总结:垂径定理的推论虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.


    变式训练:见《学练优》本课时练习“课后巩固提升”第7题


    三、板书设计


    1.垂径定理


    垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.


    2.垂径定理的推论


    平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.





    教学过程中,引导学生探究垂径定理及其推论时,强调垂径定理的得出跟圆的轴对称密切相关.在练习过程中,引导学生结合实际运用垂径定理,使学生养成良好的思维习惯.
    相关教案

    沪科版九年级下册第25章 投影与视图25.1 投影25.1.2 正投影及其性质第2课时教学设计: 这是一份沪科版九年级下册第25章 投影与视图25.1 投影25.1.2 正投影及其性质第2课时教学设计,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    沪科版九年级下册24.4.2 切线的判定与性质第2课时教学设计及反思: 这是一份沪科版九年级下册24.4.2 切线的判定与性质第2课时教学设计及反思,共4页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    初中数学沪科版九年级下册24.6.2 正多边形的性质第2课时教案设计: 这是一份初中数学沪科版九年级下册24.6.2 正多边形的性质第2课时教案设计,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021年沪科版九年级数学下册 24.2 第2课时 垂径分弦 教案设计
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map