搜索
    上传资料 赚现金
    英语朗读宝

    2020版高考数学新设计一轮复习浙江专版讲义:第五章第二节平面向量的基本定理及坐标表示

    2020版高考数学新设计一轮复习浙江专版讲义:第五章第二节平面向量的基本定理及坐标表示第1页
    2020版高考数学新设计一轮复习浙江专版讲义:第五章第二节平面向量的基本定理及坐标表示第2页
    2020版高考数学新设计一轮复习浙江专版讲义:第五章第二节平面向量的基本定理及坐标表示第3页
    还剩9页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020版高考数学新设计一轮复习浙江专版讲义:第五章第二节平面向量的基本定理及坐标表示

    展开

    第二节平面向量的基本定理及坐标表示


    1.平面向量基本定理
    如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.
    其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.
    2.平面向量的坐标运算
    (1)向量加法、减法、数乘向量及向量的模:
    设a=(x1,y1),b=(x2,y2),则
    a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),
    λa=(λx1,λy1),|a|=.
    (2)向量坐标的求法:
    ①若向量的起点是坐标原点,则终点坐标即为向量的坐标.
    ②设A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),
    ||=.
    3.平面向量共线的坐标表示
    设a=(x1,y1),b=(x2,y2),其中b≠0,则a∥b⇔x1y2-x2y1=0.

    [小题体验]
    1.已知a=(4,2),b=(-6,m),若a∥b,则m的值为______.
    答案:-3
    2.(教材习题改编)已知a=(2,1),b=(-3,4),则3a+4b=________.
    答案:(-6,19)
    3.设e1,e2是平面内一组基向量,且a=e1+2e2,b=-e1+e2,则向量e1+e2可以表示为另一组基向量a,b的线性组合,即e1+e2=________a+________b.
    解析:由题意,设e1+e2=ma+nb.
    因为a=e1+2e2,b=-e1+e2,
    所以e1+e2=m(e1+2e2)+n(-e1+e2)=(m-n)e1+(2m+n)e2.
    由平面向量基本定理,得所以
    答案: -
    4.已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m=________.
    答案:-1

    1.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.
    2.若a=(x1,y1),b=(x2,y2),则a∥b的充要条件不能表示成=,因为x2,y2有可能等于0,所以应表示为x1y2-x2y1=0.
    [小题纠偏]
    1.设e1,e2是平面内一组基底,若λ1e1+λ2e2=0,则λ1+λ2=________.
    答案:0
    2.已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),则m-n的值为________.
    解析:∵ma+nb=(2m+n,m-2n)=(9,-8),
    ∴∴∴m-n=2-5=-3.
    答案:-3


    [题组练透]
    1.(2019·温州模拟)如图,在直角梯形ABCD中,AB=2AD=2DC,E为BC边上一点,=3,F为AE的中点,则=(  )
    A.-     B.-
    C.-+ D.-+
    解析:选C 如图,取AB的中点G,连接DG,CG,易知四边形DCBG为平行四边形,∴==-=-,
    ∴=+=+=+=+,于是=-=-=-=-+,故选C.
    2.在△ABC中,点M,N满足=2,=.若=x+y,则x=________;y=________.
    解析:∵=2,∴=.
    ∵=,∴=(+),
    ∴=-=(+)-
    =-.
    又=x+y,
    ∴x=,y=-.
    答案: -
    3.如图,已知平行四边形ABCD的边BC,CD的中点分别是K,L,且=e1,=e2,试用e1,e2表示,.
    解:设=x,=y,则=x,=-y.
    由+=,+=,


    ①+②×(-2),得x-2x=e1-2e2,
    即x=-(e1-2e2)=-e1+e2,
    所以=-e1+e2.
    同理可得y=-e1+e2,即=-e1+e2.
    [谨记通法]
    用平面向量基本定理解决问题的一般思路
    (1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.
    (2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.

    [题组练透]
    1.向量a,b满足a+b=(-1,5),a-b=(5,-3),则b为(  )
    A.(-3,4)         B.(3,4)
    C.(3,-4) D.(-3,-4)
    解析:选A 由a+b=(-1,5),a-b=(5,-3),得2b=(-1,5)-(5,-3)=(-6,8),∴b=(-6,8)=(-3,4),故选A.
    2.已知M(3,-2),N(-5,-1),且=,则P点的坐标为(  )
    A.(-8,1) B.
    C. D.(8,-1)
    解析:选B 设P(x,y),则= (x-3,y+2),而=(-8,1)=,所以解得所以P.
    3.已知A(-2,4),B(3,-1),C(-3,-4).设=a,=b,=c,且=3c,=-2b,
    (1)求3a+b-3c;
    (2)求满足a=mb+nc的实数m,n;
    (3)求M,N的坐标及向量的坐标.
    解:由已知得a=(5,-5),b=(-6,-3),c=(1,8).
    (1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)
    =(15-6-3,-15-3-24)=(6,-42).
    (2)∵mb+nc=(-6m+n,-3m+8n),

    解得
    (3)设O为坐标原点,∵=-=3c,
    ∴=3c+=(3,24)+(-3,-4)=(0,20).
    ∴M(0,20).
    又∵=-=-2b,
    ∴=-2b+=(12,6)+(-3,-4)=(9,2),
    ∴N(9,2),∴=(9,-18).
    [谨记通法]
    平面向量坐标运算的技巧
    (1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.
    (2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.

    [典例引领]
    1.已知梯形ABCD,其中AB∥CD,且DC=2AB,三个顶点A(1,2),B(2,1),C(4,2),则点D的坐标为________.
    解析:∵在梯形ABCD中,DC=2AB,AB∥CD,∴=2.设点D的坐标为(x,y),则=(4-x,2-y),=(1,-1),
    ∴(4-x,2-y)=2(1,-1),即(4-x,2-y)=(2,-2),
    ∴解得故点D的坐标为(2,4).
    答案:(2,4)
    2.已知a=(1,0),b=(2,1).
    (1)当k为何值时,ka-b与a+2b共线;
    (2)若=2a+3b,=a+mb,且A,B,C三点共线,求m的值.
    解:(1)∵a=(1,0),b=(2,1),
    ∴ka-b=k(1,0)-(2,1)=(k-2,-1),
    a+2b=(1,0)+2(2,1)=(5,2),
    ∵ka-b与a+2b共线,
    ∴2(k-2)-(-1)×5=0,
    ∴k=-.
    (2)=2(1,0)+3(2,1)=(8,3),
    =(1,0)+m(2,1)=(2m+1,m).
    ∵A,B,C三点共线,∴∥,
    ∴8m-3(2m+1)=0,∴m=.
    [由题悟法]
    向量共线的充要条件
    (1)a∥b⇔a=λb(b≠0);
    (2)a∥b⇔x1y2-x2y1=0(其中a=(x1,y1),b=(x2,y2)).当涉及向量或点的坐标问题时一般利用(2)比较方便.
    [即时应用]
    1.已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的(  )
    A.充要条件        B.充分不必要条件
    C.必要不充分条件 D.既不充分也不必要条件
    解析:选A 由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6.当m=-6时,a∥(a+b),则“m=-6”是“a∥(a+b)”的充要条件.
    2.(2018·贵阳监测)已知向量m=(λ+1,1),n=(λ+2,2),若(m+n)∥(m-n),则λ=________.
    解析:因为m+n=(2λ+3,3),m-n=(-1,-1),
    又(m+n)∥(m-n),
    所以(2λ+3)×(-1)=3×(-1),解得λ=0.
    答案:0
    3.设向量a,b满足|a|=2,b=(2,1),且a与b的方向相反,则a的坐标为________.
    解析:∵a与b方向相反,∴可设a=λb(λ<0),
    ∴a=λ(2,1)=(2λ,λ).
    由|a|==2,解得λ=-2或λ=2(舍去),
    故a=(-4,-2).
    答案:(-4,-2)
    4.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则+的值等于________.
    解析:=(a-2,-2),=(-2,b-2),依题意,有(a-2)(b-2)-4=0,即ab-2a-2b=0,所以+=.
    答案:

    一抓基础,多练小题做到眼疾手快
    1.在平行四边形ABCD中,AC为对角线,若=(2,4),=(1,3),则=(  )
    A.(-2,-4)        B.(-3,-5)
    C.(3,5) D.(2,4)
    解析:选B 由题意得=-=-=(-)-=-2=(1,3)-2(2,4)=(-3,-5).
    2.已知A(-1,-1),B(m,m+2),C(2,5)三点共线,则m的值为(  )
    A.1 B.2
    C.3 D.4
    解析:选A =(m,m+2)-(-1,-1)=(m+1,m+3),
    =(2,5)-(-1,-1)=(3,6),
    ∵A,B,C三点共线,
    ∴∥,∴3(m+3)-6(m+1)=0,
    ∴m=1.故选A.
    3.如图,在△OAB中,P为线段AB上的一点,=x+y,且=2,则(  )
    A.x=,y=
    B.x=,y=
    C.x=,y=
    D.x=,y=
    解析:选A 由题意知=+,又=2,所以=+=+(-)=+,所以x=,y=.
    4.(2019·舟山模拟)已知向量a=(2,3),b=(-1,2),若ma+b与a-2b共线,则m的值为________.
    解析:由a=(2,3),b=(-1,2),得ma+b=(2m-1,3m+2),a-2b=(4,-1),又ma+b与a-2b共线,所以-1×(2m-1)=(3m+2)×4,解得m=-.
    答案:-
    5.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且u∥v,则实数x的值为________.
    解析:因为a=(1,2),b=(x,1),u=a+2b,v=2a-b,
    所以u=(1,2)+2(x,1)=(2x+1,4),
    v=2(1,2)-(x,1)=(2-x,3).
    又因为u∥v,所以3(2x+1)-4(2-x)=0,
    即10x=5,解得x=.
    答案:
    二保高考,全练题型做到高考达标
    1.(2018·温州十校联考)已知a=(-3,1),b=(-1,2),则3a-2b=(  )
    A.(7,1) B.(-7,-1)
    C.(-7,1) D.(7,-1)
    解析:选B 由题可得,3a-2b=3(-3,1)-2(-1,2)=(-9+2,3-4)=(-7,-1).
    2.已知△ABC的内角A,B,C所对的边分别为a,b,c,向量m=(a,b)与n=(cos A,sin B)平行,则A=(  )
    A. B.
    C. D.
    解析:选B 因为m∥n,所以asin B-bcos A=0,由正弦定理,得sin Asin B-sin Bcos A=0,又sin B≠0,从而tan A=,由于0<A<π,所以A=.
    3.已知A(7,1),B(1,4),直线y=ax与线段AB交于点C,且=2,则实数a等于(   )
    A.2 B.1
    C. D.
    解析:选A 设C(x,y),则=(x-7,y-1),=(1-x,4-y),
    ∵=2,∴解得∴C(3,3).
    又∵点C在直线y=ax上,∴3=a×3,∴a=2.
    4.在平面直角坐标系xOy中,已知A(1,0),B(0,1),C为坐标平面内第一象限内的点,且∠AOC=,|OC|=2,若=λ+μ,则λ+μ=(  )
    A.2 B.
    C.2 D.4
    解析:选A 因为|OC|=2,∠AOC=,所以C(,),又=λ+μ,所以(,)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=,λ+μ=2.
    5.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F.若=a,=b,则=(  )
    A.a+b B.a+b
    C.a+b D.a+b
    解析:选C 如图,∵=a,=b,
    ∴=+=+=a+b.
    ∵E是OD的中点,
    ∴=,
    ∴|DF|=|AB|.∴==(-)=×=-=a-b,
    ∴=+=a+b+a-b=a+b,故选C.
    6.已知向量a=(1,3),b=(-2,1),c=(3,2).若向量c与向量ka+b共线,则实数k=________,若c=xa+yb,则x+y的值为________.
    解析:ka+b=k(1,3)+(-2,1)=(k-2,3k+1),因为向量c与向量ka+b共线,所以2(k-2)-3(3k+1)=0,解得k=-1.因为c=xa+yb,所以(3,2)=(x-2y,3x+y),即x-2y=3,3x+y=2,解得x=1,y=-1,所以x+y=0.
    答案:-1 0
    7.已知向量=(1,-3),=(2,-1),=(k+1,k-2),若A,B,C三点能构成三角形,则实数k应满足的条件是________.
    解析:若点A,B,C能构成三角形,则向量,不共线.
    ∵=-=(2,-1)-(1,-3)=(1,2),
    =-=(k+1,k-2)-(1,-3)=(k,k+1),
    ∴1×(k+1)-2k≠0,解得k≠1.
    答案:k≠1
    8.如图,在正方形ABCD中,P为DC边上的动点,设向量=λ+μ,则λ+μ的最大值为________.
    解析:以A为坐标原点,以AB,AD所在直线分别为x轴,y轴建立平面直角坐标系(图略),设正方形的边长为2,
    则B(2,0),C(2,2),D(0,2),P(x,2),x∈[0,2].
    ∴=(2,2),=(2,-2),=(x,2).
    ∵=λ+μ,∴∴
    ∴λ+μ=.令f(x)=(0≤x≤2),
    ∵f(x)在[0,2]上单调递减,
    ∴f(x)max=f(0)=3,即λ+μ的最大值为3.
    答案:3
    9.平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).
    (1)求满足a=mb+nc的实数m,n;
    (2)若(a+kc)∥(2b-a),求实数k.
    解:(1)由题意得(3,2)=m(-1,2)+n(4,1),
    所以解得
    (2)a+kc=(3+4k,2+k),2b-a=(-5,2),
    由题意得2×(3+4k)-(-5)×(2+k)=0,
    解得k=-.
    10.如图,在梯形ABCD中,AD∥BC,且AD=BC,E,F分别为线段AD与BC的中点.设=a,=b,试用a,b为基底表示向量,,.

    解:=++=-b-a+b=b-a,
    =+=-b+=b-a,
    =+=-b-=a-b.
    三上台阶,自主选做志在冲刺名校
    1.在平面直角坐标系xOy中,已知点A(2,3),B(3,2),C(1,1),点P(x,y)在△ABC三边围成的区域(含边界)内,设=m-n(m,n∈R),则2m+n的最大值为(  )
    A.-1 B.1
    C.2 D.3
    解析:选B 由已知得=(1,-1),=(1,2),设=(x,y),∵=m-n,∴
    ∴2m+n=x-y.
    作出平面区域如图所示,令z=x-y,则y=x-z,由图象可知当直线y=x-z经过点B(3,2)时,截距最小,即z最大.
    ∴z的最大值为3-2=1,即2m+n的最大值为1.
    2.设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ (μ∈R),且+=2,则称A3,A4调和分割A1,A2.已知点C(c,0),D(d,0)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是(  )
    A.C可能是线段AB的中点
    B.D可能是线段AB的中点
    C.C,D可能同时在线段AB上
    D.C,D不可能同时在线段AB的延长线上
    解析:选D 根据已知得(c,0)-(0,0)=λ[(1,0)-(0,0)],即(c,0)=λ(1,0),从而得c=λ.(d,0)-(0,0)=μ[(1,0)-(0,0)],即(d,0)=μ(1,0),得d=μ.根据+=2,得+=2.线段AB的方程是y=0,x∈[0,1].若C是线段AB的中点,则c=,代入+=2得,=0,此等式不可能成立,故选项A的说法不正确;同理选项B的说法也不
    正确;若C,D同时在线段AB上,则0<c≤1,0<d≤1,此时≥1,≥1,+≥2,若等号成立,则只能c=d=1,根据定义,C,D是两个不同的点,矛盾,故选项C的说法也不正确;若C,D同时在线段AB的延长线上,即c>1,d>1,则+<2,与+=2矛盾,若c<0,d<0,则+是负值,与+=2矛盾,若c>1,d<0,则<1,<0,此时+<1,与+=2矛盾,故选项D的说法是正确的.
    3.已知三点A(a,0),B(0,b),C(2,2),其中a>0,b>0.
    (1)若O是坐标原点,且四边形OACB是平行四边形,试求a,b的值;
    (2)若A,B,C三点共线,试求a+b的最小值.
    解:(1)因为四边形OACB是平行四边形,
    所以=,即(a,0)=(2,2-b),
    解得
    故a=2,b=2.
    (2)因为=(-a,b),=(2,2-b),
    由A,B,C三点共线,得∥,
    所以-a(2-b)-2b=0,即2(a+b)=ab,
    因为a>0,b>0,所以2(a+b)=ab≤2,
    即(a+b)2-8(a+b)≥0,解得a+b≥8或a+b≤0.
    因为a>0,b>0,所以a+b≥8,即a+b的最小值是8.
    当且仅当a=b=4时,“=”成立.


    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map