所属成套资源:2021江苏高考数学苏教版一轮复习讲义
2021版江苏高考数学一轮复习讲义:第7章第2节 空间点、直线、平面之间的位置关系
展开
第二节 空间点、直线、平面之间的位置关系
[最新考纲] 1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.
1. 四个公理
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理3:过不在一条直线上的三点,有且只有一个平面.
拓展:公理3的三个推论
推论1:经过一条直线和这条直线外的一点,有且只有一个平面.
推论2:经过两条相交直线,有且只有一个平面.
推论3:经过两条平行直线,有且只有一个平面.
公理4:平行于同一条直线的两条直线互相平行.
2.直线与直线的位置关系
(1)位置关系的分类
(2)异面直线所成的角
①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
②范围:(0°,90°].
拓展:异面直线判定的一个定理
过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线,如图所示.
3.空间中直线与平面、平面与平面之间的位置关系
(1)空间中直线与平面的位置关系
(2)空间中平面与平面的位置关系
位置关系
图形表示
符号表示
公共点
两平面平行
α∥β
0个
两平面相交
α∩β=l
无数 个
4.等角定理
空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
唯一性定理
(1)过直线外一点有且只有一条直线与已知直线平行.
(2)过直线外一点有且只有一个平面与已知直线垂直.
(3)过平面外一点有且只有一个平面与已知平面平行.
(4)过平面外一点有且只有一条直线与已知平面垂直.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线. ( )
(2)两两相交的三条直线最多可以确定三个平面. ( )
(3)如果两个平面有三个公共点,则这两个平面重合. ( )
(4)若直线a不平行于平面α,且a⊄α,则α内的所有直线与a异面. ( )
[答案](1)× (2)√ (3)× (4)×
二、教材改编
1.已知a,b是异面直线,直线c平行于直线a,那么c与b( )
A.一定是异面直线
B.一定是相交直线
C.不可能是平行直线
D.不可能是相交直线
C [由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a,b为异面直线相矛盾.]
2.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( )
A.30° B.45°
C.60° D.90°
C [连接B1D1,D1C(图略),
则B1D1∥EF,
故∠D1B1C为所求的角,
又B1D1=B1C=D1C,
∴∠D1B1C=60°.]
3.下列命题正确的是( )
A.两个平面如果有公共点,那么一定相交
B.两个平面的公共点一定共线
C.两个平面有3个公共点一定重合
D.过空间任意三点,一定有一个平面
D [如果两个平面重合,则排除A,B两项;两个平面相交,则有一条交线,交线上任取三个点都是两个平面的公共点,故排除C项;而D项中的三点不论共线还是不共线,则一定能找到一个平面过这三个点.]
4.如图,在三棱锥ABCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则
(1)当AC,BD满足条件 时,四边形EFGH为菱形;
(2)当AC,BD满足条件 时,四边形EFGH为正方形.
(1)AC=BD (2)AC=BD且AC⊥BD [(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.
(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,
∵EF∥AC,EH∥BD,且EF=AC,EH=BD,
∴AC=BD且AC⊥BD.]
考点1 平面的基本性质及应用
共面、共线、共点问题的证明
(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.
(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.
(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.
如图所示,正方体ABCDA1B1C1D1中,E,F分别是AB和AA1的中点.求证:
(1)E,C,D1,F四点共面;
(2)CE,D1F,DA三线共点.
[证明](1)如图,连接EF,CD1,A1B.
∵E,F分别是AB,AA1的中点,
∴EF∥BA1.
又∵A1B∥D1C,∴EF∥CD1,
∴E,C,D1,F四点共面.
(2)∵EF∥CD1,EF