


还剩17页未读,
继续阅读
所属成套资源:2021高考物理基础版一轮复习学案
成套系列资料,整套一键下载
2021版高考物理(基础版)一轮复习学案:第十三章 2第二节 固体、液体和气体
展开
第二节 固体、液体和气体
[学生用书P262]
【基础梳理】
提示:异性 熔点 表面积 p1V1=p2V2
=
【自我诊断】
1.判一判
(1)大块塑料粉碎成形状相同的颗粒,每个颗粒即为一个单晶体.( )
(2)单晶体的所有物理性质都是各向异性的.( )
(3)晶体有天然规则的几何形状,是因为晶体的物质微粒是规则排列的.( )
(4)液晶是液体和晶体的混合物.( )
(5)船浮于水面上不是由于液体的表面张力.( )
(6)水蒸气达到饱和时,水蒸气的压强不再变化,这时,水不再蒸发和凝结.( )
提示:(1)× (2)× (3)√ (4)× (5)√ (6)×
2.做一做
(1)对下列几种固体物质的认识,正确的有( )
A.食盐熔化过程中,温度保持不变,说明食盐是晶体
B.烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体
C.天然石英表现为各向异性,是由于该物质的微粒在空间的排列不规则
D.石墨和金刚石的物理性质不同,是由于组成它们的物质微粒排列结构不同
提示:选AD.晶体才有固定的熔点,A正确;熔化的蜂蜡呈椭圆形说明云母片导热具有各向异性的特点,故此现象说明云母片是晶体,B错误;天然石英具有各向异性的原因是物质微粒在空间的排列是规则的,C错误;石墨与金刚石皆由碳原子组成,但它们的物质微粒排列结构是不同的,D正确.
(2)(2020·河北唐山模拟)对于一定质量的理想气体,下列论述中正确的是( )
A.若单位体积内分子个数不变,当分子热运动加剧时,压强一定变大
B.若单位体积内分子个数不变,当分子热运动加剧时,压强可能不变
C.若气体的压强不变而温度降低时,则单位体积内分子个数一定增加
D.若气体的压强不变而温度降低时,则单位体积内分子个数可能不变
E.若气体体积减小,温度升高,单位时间内分子对器壁的撞击次数增多,平均撞击力增大,因此压强增大
提示:选ACE.气体压强的大小与气体分子的平均动能和单位体积内的分子数两个因素有关.若单位体积内分子数不变,当分子热运动加剧时,决定压强的两个因素中一个不变,一个增大,故气体的压强一定变大,A正确,B错误;若气体的压强不变而温度降低时,气体的体积一定减小,故单位体积内的分子个数一定增加,C正确,D错误;由气体压强产生原因知,E正确.
固体和液体的性质[学生用书P263]
【知识提炼】
1.晶体和非晶体
(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性.
(2)只要是具有各向异性的物体必定是晶体,且是单晶体.
(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体.
2.液体表面张力
形成原因
表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力
表面特性
表面层分子间的引力使液面产生了表面张力,使液体表面好像一层绷紧的弹性薄膜,分子势能大于液体内部的分子势能
方向
和液面相切,垂直于液面上的各条分界线
效果
表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小
【跟进题组】
1.以下对固体和液体的认识,正确的有( )
A.液体与固体接触时,如果附着层内分子比液体内部分子稀疏,表现为不浸润
B.影响蒸发快慢以及人们对干爽与潮湿感受的因素是空气中水蒸气的压强与同一气温下水的饱和汽压的差距
C.液体汽化时吸收的热量等于液体分子克服分子引力而做的功
D.车轮在潮湿的地面上滚过后,车辙中会渗出水,属于毛细现象
解析:选ABD.液体与固体接触时,如果附着层内分子比液体内部分子稀疏,分子力为引力表现为不浸润,故A正确;影响蒸发快慢以及影响人们对干爽与潮湿感受的因素是空气的相对湿度B=×100%,即空气中水蒸气的压强与同一温度下水的饱和汽压的差距,故B正确;液体汽化时,液体分子离开液体表面成为气体分子,要克服其他液体分子的吸引而做功,因此要吸收能量,液体汽化过程中体积增大很多,体积膨胀时要克服外界气压做功,即液体的汽化热与外界气体的压强有关,且也要吸收能量,故C错误;车轮在潮湿的地面上滚过后,车辙中会渗出水,属于毛细现象,故D正确.
2.下列说法不正确的是( )
A.把一枚针轻放在水面上,它会浮在水面上,这是水表面存在表面张力的缘故
B.在处于失重状态的宇宙飞船中,一大滴水银会成球状,是因为液体内分子间有相互吸引力
C.将玻璃管道裂口放在火上烧,它的尖端就变圆,是熔化的玻璃在表面张力的作用下,表面要收缩到最小的缘故
D.漂浮在热菜汤表面上的油滴,从上面观察是圆形的,是油滴液体呈各向同性的缘故
E.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开.这是水膜具有表面张力的缘故
解析:选BDE.水的表面张力托起针,A正确;B、D两项也是表面张力原因,故B、D均错误,C正确;在垂直于玻璃板方向很难将夹有水膜的玻璃板拉开是因为大气压的作用,E错误.
气体压强的产生和计算[学生用书P263]
【知识提炼】
1.理解气体压强的三个角度
产生
原因
气体分子对容器壁频繁地碰撞产生的
决定
因素
宏观上
决定于气体的温度和体积
微观上
取决于分子的平均动能和分子的密集程度
计算
方法
a=0
力的平衡条件
a≠0
牛顿第二定律
2.平衡状态下气体压强的求法
力平
衡法
选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强
等压
面法
在连通器中,同一种液体(中间不间断)同一深度处压强相等.液体内深h处总压强p=p0+ρgh,p0为液面上方的压强
液
片
法
选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强
3.加速运动系统中封闭气体压强的求法
选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解.
【跟进题组】
1.对于一定量的稀薄气体,下列说法正确的是 ( )
A.压强变大时,分子热运动必然变得剧烈
B.保持压强不变时,分子热运动可能变得剧烈
C.压强变大时,分子间的平均距离必然变小
D.压强变小时,分子间的平均距离可能变小
解析:选BD.压强变大时,气体的温度不一定升高,分子的热运动不一定变得剧烈,故A错误;压强不变时,若气体的体积增大,则气体的温度会升高,分子热运动会变得剧烈,故B正确; 压强变大时,由于气体温度不确定,则气体的体积可能不变,可能变大,也可能变小,其分子间的平均距离可能不变,也可能变大或变小,故C错误;压强变小时,气体的体积可能不变,可能变大也可能变小,所以分子间的平均距离可能不变,可能变大,可能变小,故D正确.
2.(1)若已知大气压强为p0,图中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强.
(2)如图中两个汽缸质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下.两个汽缸内分别封闭有一定质量的空气A、B,大气压为p0,求封闭气体A、B的压强.
(3)如图
所示,光滑水平面上放有一质量为M的汽缸,汽缸内放有一质量为m的可在汽缸内无摩擦滑动的活塞,活塞面积为S.现用水平恒力F向右推汽缸,最后汽缸和活塞达到相对静止状态,求此时缸内封闭气体的压强p.(已知外界大气压为p0)
解析:(1)在题图甲中,以高为h的液柱为研究对象,
由二力平衡知
p甲S+ρghS=p0S
所以p甲=p0-ρgh
在题图乙中,以B液面为研究对象,
由平衡方程F上=F下有:
pAS+ρghS=p0S
p乙=pA=p0-ρgh
在题图丙中,仍以B液面为研究对象,有
pA′+ρghsin 60°=pB′=p0
所以p丙=pA′=p0-ρgh.
(2)题图
甲中选活塞为研究对象受力分析如图1,由二力平衡知
pAS=p0S+mg
得pA=p0+
题图乙中选汽缸为研究对象,受力分析如图2所示,由二力平衡知,p0S=pBS+Mg
得pB=p0-.
(3)选取汽缸和活塞整体为研究对象
相对静止时有F=(M+m)a
再选活塞为研究对象,根据牛顿第二定律有
pS-p0S=ma
解得p=p0+.
答案:(1)甲:p0-ρgh 乙:p0-ρgh 丙:p0-ρgh (2)p0+ p0- (3)p0+
气体实验定律[学生用书P264]
【知识提炼】
1.气体实验定律的拓展式
(1)查理定律的拓展式:Δp=ΔT.
(2)盖—吕萨克定律的拓展式:ΔV=ΔT.
2.利用气体实验定律解决问题的基本思路
3.一定质量的理想气体不同图象的比较
特点
示例
等温过程
p-V
pV=CT(其中C为恒量),即pV之积越大的等温线温度越高,线离原点越远
p-
p=CT,斜率k=CT,即斜率越大,温度越高
续 表
特点
示例
等容
过程
p-T
p=T,斜率k=,即斜率越大,体积越小
等压
过程
V-T
V=T,斜率k=,即斜率越大,压强越小
【典题例析】
(2019·高考全国卷Ⅰ)热等静压设备广泛应用于材料加工中.该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改善其性能.一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中.已知每瓶氩气的容积为3.2×10-2 m3,使用前瓶中气体压强为1.5×107 Pa,使用后瓶中剩余气体压强为2.0×106 Pa;室温温度为27 ℃.氩气可视为理想气体.
(1)求压入氩气后炉腔中气体在室温下的压强;
(2)将压入氩气后的炉腔加热到1 227 ℃,求此时炉腔中气体的压强.
[解析] (1)设初始时每瓶气体的体积为V0,压强为p0;使用后气瓶中剩余气体的压强为p1.
假设体积为V0、压强为p0的气体压强变为p1时,其体积膨胀为V1.由玻意耳定律p0V0=p1V1①
被压入炉腔的气体在室温和p1条件下的体积为
V′1=V1-V0②
设10瓶气体压入完成后炉腔中气体的压强为p2,体积为V2.
由玻意耳定律
p2V2=10p1V′1③
联立①②③式并代入题给数据得
p2=3.2×107 Pa.④
(2)设加热前炉腔的温度为T0,加热后炉腔温度为T1,气体压强为p3.由查理定律=⑤
联立④⑤式并代入题给数据得
p3=1.6×108 Pa.
[答案] (1)3.2×107 Pa (2)1.6×108 Pa
【迁移题组】
迁移1 等温变化——玻意耳定律
1.(2019·高考全国卷Ⅱ)如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平放在水平地面上,汽缸内壁光滑.整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气.平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p.现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求
(1)抽气前氢气的压强;
(2)抽气后氢气的压强和体积.
解析:(1)设抽气前氢气的压强为p10,根据力的平衡条件得
(p10-p)·2S=(p0-p)·S①
得p10=(p0+p).②
(2)设抽气后氢气的压强和体积分别为p1和V1,氮气的压强和体积分别为p2和V2.
根据力的平衡条件有p2·S=p1·2S③
由玻意耳定律得
p1V1=p10·2V0④
p2V2=p0V0⑤
由于两活塞用刚性杆连接,故
V1-2V0=2(V0-V2)⑥
联立②③④⑤⑥式解得
p1=p0+p
V1=.
答案:(1)(p0+p) (2)p0+p
迁移2 等容变化——查理定律
2.(2017·高考全国卷Ⅰ)如图,容积均为V的汽缸A、B下端有细管(容积可忽略)连通,阀门K2位于细管的中部,A、B的顶部各有一阀门K1、K3;B中有一可自由滑动的活塞(质量、体积均可忽略).初始时,三个阀门均打开,活塞在B的底部;关闭K2、K3,通过K1给汽缸充气,使A中气体的压强达到大气压p0的3倍后关闭K1.已知室温为27 ℃,汽缸导热.
(1)打开K2,求稳定时活塞上方气体的体积和压强;
(2)接着打开K3,求稳定时活塞的位置;
(3)再缓慢加热汽缸内气体使其温度升高20 ℃,求此时活塞下方气体的压强.
解析:(1)设打开K2后,稳定时活塞上方气体的压强为p1,体积为V1.依题意,被活塞分开的两部分气体都经历等温过程.由玻意耳定律得
p0V=p1V1①
(3p0)V=p1(2V-V1)②
联立①②式得
V1=③
p1=2p0.④
(2)打开K3后,由④式知,活塞必定上升.设在活塞下方气体与A中气体的体积之和为V2(V2≤2V)时,活塞下气体压强为p2.由玻意耳定律得(3p0)V=p2V2 ⑤
由⑤式得
p2=p0⑥
由⑥式知,打开K3后活塞上升直到B的顶部为止;此时p2为p′2=p0.
(3)设加热后活塞下方气体的压强为p3,气体温度从T1=300 K升高到T2=320 K的等容过程中,由查理定律得
=⑦
将有关数据代入⑦式得
p3=1.6p0.
答案:见解析
迁移3 等压变化——盖—吕萨克定律
3.如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0 cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0 cm.若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同.已知大气压强为76 cmHg,环境温度为296 K.
(1)求细管的长度;
(2)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度.
解析:(1)设细管的长度为L,横截面的面积为S,水银柱高度为h,初始时,设水银柱上表面到管口的距离为h1,被密封气体的体积为V,压强为p;细管倒置时,气体体积为V1,压强为p1.由玻意耳定律有
pV=p1V1①
由力的平衡条件有
p=p0+ρgh②
p1=p0-ρgh③
式中,ρ、g分别为水银的密度和重力加速度的大小,p0为大气压强.由题意有
V=S(L-h1-h)④
V1=S(L-h)⑤
由①②③④⑤式和题给条件得
L=41 cm.⑥
(2)设气体被加热前后的温度分别为T0和T,由盖—吕萨克定律有
=⑦
由④⑤⑥⑦式和题给数据得
T=312 K.
答案:(1)41 cm (2)312 K
迁移4 气体实验定律中的图象问题分析
4.如图甲是一定质量的气体由状态A经过状态B变为状态C的V-T图象.已知气体在状态A时的压强是1.5×105 Pa.
(1)说出A→B过程中压强变化的情形,并根据图象提供的信息,计算图甲中TA的温度值.
(2)请在图乙所示的坐标系中,作出该气体由状态A经过状态B变为状态C的p-T图象,并在图线相应位置上标出字母A、B、C.如果需要计算才能确定的有关坐标值,请写出计算过程.
解析:(1)从题图甲可以看出,A与B连线的延长线过原点,所以A→B是一个等压变化,即pA=pB
根据盖—吕萨克定律可得=
所以TA=TB=×300 K=200 K.
(2)由题图甲可知,由B→C是等容变化,根据查理定律得=,所以pC=pB=2.0×105 Pa
则可画出由状态A→B→C的p-T图象如图所示.
答案:见解析
理想气体状态方程[学生用书P266]
【知识提炼】
应用理想气体状态方程解题的一般步骤
(1)明确研究对象,即某一定质量的理想气体.
(2)确定气体在始末状态的参量p1、V1、T1及p2、V2、T2.
(3)由状态方程列式求解.
(4)讨论结果的合理性.
【典题例析】
如图所示,有两个不计质量和厚度的活塞M、N,将两部分理想气体A、B封闭在绝热汽缸内,温度均是27 ℃.M活塞是导热的,N活塞是绝热的,均可沿汽缸无摩擦地滑动,已知活塞的横截面积均为S=2 cm2,初始时M活塞相对于底部的高度为h1=27 cm,N活塞相对于底部的高度为h2=18 cm.现将一质量为m=1 kg的小物体放在M活塞的上表面上,活塞下降.已知大气压强为p0=1.0×105 Pa.(取g=10 m/s2)
(1)求下部分气体的压强;
(2)现通过电热丝对下部分气体进行缓慢加热,使下部分气体的温度变为127 ℃,求稳定后活塞M、N距离底部的高度.
[解析] (1)设末状态下部分气体的压强为p,以两个活塞和重物作为整体进行受力分析得
pS=mg+p0S
得p=p0+=1.5×105 Pa.
(2)对下部分气体进行分析,初状态压强为p0,体积为h2S,温度为T1,末状态压强为p,体积设为h3S,即N活塞相对底部的高度为h3,温度为T2
由理想气体状态方程可得=
得h3=h2=16 cm
对上部分气体进行分析,根据玻意耳定律可得
p0(h1-h2)S=pLS
得L=6 cm
故此时活塞M距离底部的高度为
h4=16 cm+6 cm=22 cm.
[答案] (1)1.5×105 Pa (2)22 cm 16 cm
【迁移题组】
迁移1 理想气体状态方程的应用
1.一质量M=10 kg、高度L=35 cm的圆柱形汽缸,内壁光滑,汽缸内有一薄活塞封闭了一定质量的理想气体,活塞质量m=4 kg、截面积S=100 cm2.温度t0=27 ℃时,用绳子系住活塞将汽缸悬挂起来,如图甲所示,汽缸内气体柱的高L1=32 cm.如果用绳子系住汽缸底,将汽缸倒过来悬挂起来,如图乙所
示,汽缸内气体柱的高L2=30 cm,两种情况下汽缸都处于竖直状态,重力加速度g取9.8 m/s2.
(1)求当时的大气压强;
(2)图乙状态时,在活塞下挂一质量m′=3 kg的物体,如图丙所示,则温度升高到多少时,活塞将从汽缸中脱落?
解析:(1)由题图甲状态到图乙状态,为等温变化
p1=p0-,p2=p0-
由玻意耳定律有p1L1S =p2L2S
所以L1S=L2S
可解得p0==9.8×104 Pa.
(2)活塞脱落的临界状态:气柱体积为LS
压强p3=p0-
设温度为t,由理想气体状态方程:
=
得t=-273 K=66 ℃.
答案:(1)9.8×104 Pa (2)66 ℃
迁移2 理想气体状态方程与图象的综合应用
2.(2020·河北唐山模拟)回热式制冷机是一种深低温设备,制冷极限约50 K.某台设备工作时,一定量的氦气(可视为理想气体)缓慢经历如图所示的四个过程:从状态A到B和C到D是等温过程,温度分别为t1=27 ℃和t2=-133 ℃;从状态B到C和D到A是等容过程,体积分别为V0和5V0.求状态B与D的压强之比.
解析:A到B、C到D均为等温过程,则TB=(27+273)K=300 K,TD=(-133+273)K=140 K,由理想气体状态方程可知:=
得:===≈10.7.
答案:10.7
[学生用书P395(单独成册)]
(建议用时:40分钟)
一、选择题
1.(2020·辽宁锦州模拟)在甲、乙、丙三种固体薄片上涂上蜡,用烧热的针接触其上一点,蜡熔化的范围如图所示.甲、乙、丙三种固体在熔化过程中温度随加热时间变化的关系如图所示,则( )
A.甲、乙为非晶体,丙是晶体
B.甲、丙为晶体,乙是非晶体
C.甲、丙为非晶体,乙是晶体
D.甲为多晶体,乙为非晶体,丙为单晶体
解析:选B.由题图可知,甲、乙在导热性质上表现各向同性,丙具有各向异性,甲、丙有固定的熔点,乙无固定的熔点,所以甲、丙为晶体,乙是非晶体,B正确;甲为晶体,但仅从图中无法确定它的其他性质,所以甲可能是单晶体,也可能是多晶体,丙为单晶体,故A、C、D错误.
2.下列说法正确的是( )
A.将一块晶体敲碎后,得到的小颗粒是非晶体
B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质
C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体
D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体
E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变
解析:选BCD.将一块晶体敲碎后,得到的小颗粒仍是晶体,故A错误;单晶体具有各向异性,有些单晶体沿不同方向上的光学性质不同,故B正确;例如金刚石和石墨由同种元素构成,但由于原子的排列方式不同而成为不同的晶体,故C正确;晶体与非晶体在一定条件下可以相互转化.如天然水晶是晶体,熔融过的水晶(即石英玻璃)是非晶体,也有些非晶体在一定条件下可转化为晶体,故D正确;熔化过程中,晶体的温度不变,但内能改变,故E错误.
3.下列说法正确的是( )
A.水的饱和汽压随温度的升高而增加
B.浸润和不浸润现象是液体分子间相互作用的表现
C.一定质量的0 ℃的水的内能大于等质量的0 ℃的冰的内能
D.气体的压强是由于气体分子间的相互排斥而产生的
E.一些昆虫可以停在水面上,是由于水表面存在表面张力
解析:选ACE.饱和汽压与液体材料和温度有关,温度越高,饱和汽压越大,故A正确;浸润与不浸润均是分子作用的表现,是由于液体的表面层与固体表面之间的分子之间相互作用的结果,故B错误;由于水结冰要放热,故一定质量的0 ℃的水的内能大于等质量的0 ℃的冰的内能,故C正确;气体的压强是由气体分子对容器壁的频繁碰撞引起,与分子数密度和平均动能有关,故D错误;小昆虫可以停在水面上,由于水表面存在表面张力,故E正确.
4.(2020·陕西汉中高三一模)下列说法正确的是( )
A.晶体一定具有规则的形状且有各向异性的特征
B.液体的分子势能与液体的体积无关
C.实际的气体的体积变化时,其内能可能不变
D.组成固体、液体、气体的物质分子依照一定的规律在空间整齐地排列成“空间点阵”
解析:选C.单晶体一定具有规则的形状,且有各向异性的特征,而多晶体的物理性质表现为各向同性,选项A错误;分子势能的产生是由于分子间存在作用力,微观上分子间距离的变化引起宏观上体积的变化,分子间作用力变化,分子势能才变化,选项B错误;当气体体积变化时,若温度同时发生变化,气体内能可能不变,选项C正确;只有晶体的分子依照一定的规律在空间整齐地排列成“空间点阵”,选项D错误.
5.(2020·湖北武汉模拟)如图所示,是水的饱和汽压与温度关系的图线,请结合饱和汽与饱和汽压的知识判断下列说法正确的是( )
A.水的饱和汽压随温度的变化而变化,温度升高,饱和汽压增大
B.在一定温度下,饱和汽的分子数密度是不变的
C.当液体处于饱和汽状态时,液体会停止蒸发现象
D.在实际问题中,饱和汽压包括水蒸气的气压和空气中其他各种气体的气压
解析:选AB.当液体处于饱和汽状态时,液体与气体达到了一种动态平衡,液体蒸发现象不会停止,C错误;在实际问题中,水面上方含有水分子、空气中的其他分子,但我们所研究的饱和汽压只是水蒸气的分气压,D错误.
6.一定
质量的理想气体,从图中A状态开始,经历了B、C,最后到D状态,下列说法中正确的是( )
A.A→B温度升高,体积不变
B.B→C压强不变,体积变大
C.C→D压强变小,体积变小
D.B点的温度最高,C点的体积最大
解析:选A.在p-T图象中,各点与原点连线斜率的倒数表示气体的体积,所以四个状态体积的大小关系为VA=VB>VD>VC.
7.(2020·江苏南京模拟)一定质量的理想气体,经等温压缩,气体的压强增大,用分子动理论的观点分析,这是因为 ( )
A.气体分子的平均速率不变
B.气体分子每次碰撞器壁的平均冲力增大
C.单位时间内单位面积器壁上受到气体分子碰撞的次数增多
D.气体分子的总数增加
E.气体分子的密度增大
解析:选ACE.气体温度不变,分子平均动能、平均速率均不变,A正确;理想气体经等温压缩,压强增大,体积减小,分子密度增大,则单位时间内单位面积器壁上受到气体分子的碰撞次数增多,但气体分子每次碰撞器壁的冲力不变,C、E正确,B、D错误.
8.如图所示,粗细均匀的玻璃管A和B由一橡皮管连接,一定质量的空气被水银柱封闭在A管内,初始时两管水银面等高,B管上方与大气相通.若固定A管,将B管沿竖直方向缓慢下移一小段距离H,A管内的水银面高度相应变化h,则( )
A.h=H B.h<
C.h= D.
解析:选B.若A管上端也是开口的,则当B管沿竖直方向缓慢下移一小段距离H后,两侧液面仍然等高,A管内的水银面高度相应变化H,但实际上,A管上端是封闭的,故A管内水银面下移过程中A管内封闭气体的压强变小,故两侧液面不再平齐,A管内水银面高度相应变化h<,B正确.
9.如图,一定量的理想气体从状态a沿直线变化到状态b,在此过程中,其压强( )
A.逐渐增大
B.逐渐减小
C.始终不变
D.先增大后减小
解析:选A.法一:由题图可知,气体从状态a变到状态b,体积逐渐减小,温度逐渐升高,由=C可知,压强逐渐增大,故A正确.
法二:由=C得:V=T,从a到b,ab段上各点与O点连线的斜率逐渐减小,即逐渐减小,p逐渐增大,故A正确.
二、非选择题
10.(2019·高考全国卷Ⅱ)如p-V图所示,1、2、3三个点代表某容器中一定量理想气体的三个不同状态,对应的温度分别是T1、T2、T3.用N1、N2、N3分别表示这三个状态下气体分子在单位时间内撞击容器壁上单位面积的平均次数,则N1________N2,T1________T3,N2________N3.(填“大于”“小于”或“等于”)
解析:对一定质量的理想气体,为定值,由p-V图象可知,2p1·V1=p1·2V1>p1·V1,所以T1=T3>T2.状态1与状态2时气体体积相同,单位体积内分子数相同,但状态1下的气体分子平均动能更大,在单位时间内撞击器壁单位面积的平均次数更多,所以N1>N2;状态2与状态3时气体压强相同,状态3下的气体分子平均动能更大,在单位时间内撞击器壁单位面积的平均次数较少,所以N2>N3.
答案:大于 等于 大于
11.(2018·高考全国卷Ⅲ)在两端封闭、粗细均匀的U形细玻璃管内有一段水银柱,水银柱的两端各封闭有一段空气.当U形管两端竖直朝上时,左、右两边空气柱的长度分别为l1=18.0 cm和l2=12.0 cm,左边气体的压强为12.0 cmHg.现将U形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U形管平放时两边空气柱的长度.在整个过程中,气体温度不变.
解析:
设U形管两端竖直朝上时,左、右两边气体的压强分别为p1和p2.U形管水平放置时,两边气体压强相等,设为p,此时原左、右两边气柱长度分别变为l′1和l′2.由力的平衡条件有
p1=p2+ρg(l1-l2)①
式中ρ为水银密度,g为重力加速度大小
由玻意耳定律有
p1l1=pl′1②
p2l2=pl′2③
两边气柱长度的变化量大小相等
l′1-l1=l2-l′2④
由①②③④式和题给条件得
l′1=22.5 cm
l′2=7.5 cm.
答案:见解析
12.(2018·高考全国卷Ⅱ)如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a和b,a、b间距为h,a距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体.已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦.开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0.现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b处.求此时汽缸内气体的温度以及在此过程中气体对外所做的功.重力加速度大小为g.
解析:开始时活塞位于a处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动.设此时汽缸中气体的温度为T1,压强为p1,根据查理定律有
=①
根据力的平衡条件有p1S=p0S+mg②
联立①②式可得
T1=(1+)T0③
此后,汽缸中的气体经历等压过程,直至活塞刚好到达b处,设此时汽缸中气体的温度为T2;活塞位于a处和b处时气体的体积分别为V1和V2.根据盖—吕萨克定律有=④
式中
V1=SH⑤
V2=S(H+h)⑥
联立③④⑤⑥式解得
T2=(1+)(1+)T0
从开始加热到活塞到达b处的过程中,汽缸中的气体对外做的功为
W=(p0S+mg)h.
答案:见解析
[学生用书P262]
【基础梳理】
提示:异性 熔点 表面积 p1V1=p2V2
=
【自我诊断】
1.判一判
(1)大块塑料粉碎成形状相同的颗粒,每个颗粒即为一个单晶体.( )
(2)单晶体的所有物理性质都是各向异性的.( )
(3)晶体有天然规则的几何形状,是因为晶体的物质微粒是规则排列的.( )
(4)液晶是液体和晶体的混合物.( )
(5)船浮于水面上不是由于液体的表面张力.( )
(6)水蒸气达到饱和时,水蒸气的压强不再变化,这时,水不再蒸发和凝结.( )
提示:(1)× (2)× (3)√ (4)× (5)√ (6)×
2.做一做
(1)对下列几种固体物质的认识,正确的有( )
A.食盐熔化过程中,温度保持不变,说明食盐是晶体
B.烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体
C.天然石英表现为各向异性,是由于该物质的微粒在空间的排列不规则
D.石墨和金刚石的物理性质不同,是由于组成它们的物质微粒排列结构不同
提示:选AD.晶体才有固定的熔点,A正确;熔化的蜂蜡呈椭圆形说明云母片导热具有各向异性的特点,故此现象说明云母片是晶体,B错误;天然石英具有各向异性的原因是物质微粒在空间的排列是规则的,C错误;石墨与金刚石皆由碳原子组成,但它们的物质微粒排列结构是不同的,D正确.
(2)(2020·河北唐山模拟)对于一定质量的理想气体,下列论述中正确的是( )
A.若单位体积内分子个数不变,当分子热运动加剧时,压强一定变大
B.若单位体积内分子个数不变,当分子热运动加剧时,压强可能不变
C.若气体的压强不变而温度降低时,则单位体积内分子个数一定增加
D.若气体的压强不变而温度降低时,则单位体积内分子个数可能不变
E.若气体体积减小,温度升高,单位时间内分子对器壁的撞击次数增多,平均撞击力增大,因此压强增大
提示:选ACE.气体压强的大小与气体分子的平均动能和单位体积内的分子数两个因素有关.若单位体积内分子数不变,当分子热运动加剧时,决定压强的两个因素中一个不变,一个增大,故气体的压强一定变大,A正确,B错误;若气体的压强不变而温度降低时,气体的体积一定减小,故单位体积内的分子个数一定增加,C正确,D错误;由气体压强产生原因知,E正确.
固体和液体的性质[学生用书P263]
【知识提炼】
1.晶体和非晶体
(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性.
(2)只要是具有各向异性的物体必定是晶体,且是单晶体.
(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体.
2.液体表面张力
形成原因
表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力
表面特性
表面层分子间的引力使液面产生了表面张力,使液体表面好像一层绷紧的弹性薄膜,分子势能大于液体内部的分子势能
方向
和液面相切,垂直于液面上的各条分界线
效果
表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小
【跟进题组】
1.以下对固体和液体的认识,正确的有( )
A.液体与固体接触时,如果附着层内分子比液体内部分子稀疏,表现为不浸润
B.影响蒸发快慢以及人们对干爽与潮湿感受的因素是空气中水蒸气的压强与同一气温下水的饱和汽压的差距
C.液体汽化时吸收的热量等于液体分子克服分子引力而做的功
D.车轮在潮湿的地面上滚过后,车辙中会渗出水,属于毛细现象
解析:选ABD.液体与固体接触时,如果附着层内分子比液体内部分子稀疏,分子力为引力表现为不浸润,故A正确;影响蒸发快慢以及影响人们对干爽与潮湿感受的因素是空气的相对湿度B=×100%,即空气中水蒸气的压强与同一温度下水的饱和汽压的差距,故B正确;液体汽化时,液体分子离开液体表面成为气体分子,要克服其他液体分子的吸引而做功,因此要吸收能量,液体汽化过程中体积增大很多,体积膨胀时要克服外界气压做功,即液体的汽化热与外界气体的压强有关,且也要吸收能量,故C错误;车轮在潮湿的地面上滚过后,车辙中会渗出水,属于毛细现象,故D正确.
2.下列说法不正确的是( )
A.把一枚针轻放在水面上,它会浮在水面上,这是水表面存在表面张力的缘故
B.在处于失重状态的宇宙飞船中,一大滴水银会成球状,是因为液体内分子间有相互吸引力
C.将玻璃管道裂口放在火上烧,它的尖端就变圆,是熔化的玻璃在表面张力的作用下,表面要收缩到最小的缘故
D.漂浮在热菜汤表面上的油滴,从上面观察是圆形的,是油滴液体呈各向同性的缘故
E.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开.这是水膜具有表面张力的缘故
解析:选BDE.水的表面张力托起针,A正确;B、D两项也是表面张力原因,故B、D均错误,C正确;在垂直于玻璃板方向很难将夹有水膜的玻璃板拉开是因为大气压的作用,E错误.
气体压强的产生和计算[学生用书P263]
【知识提炼】
1.理解气体压强的三个角度
产生
原因
气体分子对容器壁频繁地碰撞产生的
决定
因素
宏观上
决定于气体的温度和体积
微观上
取决于分子的平均动能和分子的密集程度
计算
方法
a=0
力的平衡条件
a≠0
牛顿第二定律
2.平衡状态下气体压强的求法
力平
衡法
选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强
等压
面法
在连通器中,同一种液体(中间不间断)同一深度处压强相等.液体内深h处总压强p=p0+ρgh,p0为液面上方的压强
液
片
法
选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强
3.加速运动系统中封闭气体压强的求法
选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解.
【跟进题组】
1.对于一定量的稀薄气体,下列说法正确的是 ( )
A.压强变大时,分子热运动必然变得剧烈
B.保持压强不变时,分子热运动可能变得剧烈
C.压强变大时,分子间的平均距离必然变小
D.压强变小时,分子间的平均距离可能变小
解析:选BD.压强变大时,气体的温度不一定升高,分子的热运动不一定变得剧烈,故A错误;压强不变时,若气体的体积增大,则气体的温度会升高,分子热运动会变得剧烈,故B正确; 压强变大时,由于气体温度不确定,则气体的体积可能不变,可能变大,也可能变小,其分子间的平均距离可能不变,也可能变大或变小,故C错误;压强变小时,气体的体积可能不变,可能变大也可能变小,所以分子间的平均距离可能不变,可能变大,可能变小,故D正确.
2.(1)若已知大气压强为p0,图中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强.
(2)如图中两个汽缸质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下.两个汽缸内分别封闭有一定质量的空气A、B,大气压为p0,求封闭气体A、B的压强.
(3)如图
所示,光滑水平面上放有一质量为M的汽缸,汽缸内放有一质量为m的可在汽缸内无摩擦滑动的活塞,活塞面积为S.现用水平恒力F向右推汽缸,最后汽缸和活塞达到相对静止状态,求此时缸内封闭气体的压强p.(已知外界大气压为p0)
解析:(1)在题图甲中,以高为h的液柱为研究对象,
由二力平衡知
p甲S+ρghS=p0S
所以p甲=p0-ρgh
在题图乙中,以B液面为研究对象,
由平衡方程F上=F下有:
pAS+ρghS=p0S
p乙=pA=p0-ρgh
在题图丙中,仍以B液面为研究对象,有
pA′+ρghsin 60°=pB′=p0
所以p丙=pA′=p0-ρgh.
(2)题图
甲中选活塞为研究对象受力分析如图1,由二力平衡知
pAS=p0S+mg
得pA=p0+
题图乙中选汽缸为研究对象,受力分析如图2所示,由二力平衡知,p0S=pBS+Mg
得pB=p0-.
(3)选取汽缸和活塞整体为研究对象
相对静止时有F=(M+m)a
再选活塞为研究对象,根据牛顿第二定律有
pS-p0S=ma
解得p=p0+.
答案:(1)甲:p0-ρgh 乙:p0-ρgh 丙:p0-ρgh (2)p0+ p0- (3)p0+
气体实验定律[学生用书P264]
【知识提炼】
1.气体实验定律的拓展式
(1)查理定律的拓展式:Δp=ΔT.
(2)盖—吕萨克定律的拓展式:ΔV=ΔT.
2.利用气体实验定律解决问题的基本思路
3.一定质量的理想气体不同图象的比较
特点
示例
等温过程
p-V
pV=CT(其中C为恒量),即pV之积越大的等温线温度越高,线离原点越远
p-
p=CT,斜率k=CT,即斜率越大,温度越高
续 表
特点
示例
等容
过程
p-T
p=T,斜率k=,即斜率越大,体积越小
等压
过程
V-T
V=T,斜率k=,即斜率越大,压强越小
【典题例析】
(2019·高考全国卷Ⅰ)热等静压设备广泛应用于材料加工中.该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改善其性能.一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中.已知每瓶氩气的容积为3.2×10-2 m3,使用前瓶中气体压强为1.5×107 Pa,使用后瓶中剩余气体压强为2.0×106 Pa;室温温度为27 ℃.氩气可视为理想气体.
(1)求压入氩气后炉腔中气体在室温下的压强;
(2)将压入氩气后的炉腔加热到1 227 ℃,求此时炉腔中气体的压强.
[解析] (1)设初始时每瓶气体的体积为V0,压强为p0;使用后气瓶中剩余气体的压强为p1.
假设体积为V0、压强为p0的气体压强变为p1时,其体积膨胀为V1.由玻意耳定律p0V0=p1V1①
被压入炉腔的气体在室温和p1条件下的体积为
V′1=V1-V0②
设10瓶气体压入完成后炉腔中气体的压强为p2,体积为V2.
由玻意耳定律
p2V2=10p1V′1③
联立①②③式并代入题给数据得
p2=3.2×107 Pa.④
(2)设加热前炉腔的温度为T0,加热后炉腔温度为T1,气体压强为p3.由查理定律=⑤
联立④⑤式并代入题给数据得
p3=1.6×108 Pa.
[答案] (1)3.2×107 Pa (2)1.6×108 Pa
【迁移题组】
迁移1 等温变化——玻意耳定律
1.(2019·高考全国卷Ⅱ)如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平放在水平地面上,汽缸内壁光滑.整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气.平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p.现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求
(1)抽气前氢气的压强;
(2)抽气后氢气的压强和体积.
解析:(1)设抽气前氢气的压强为p10,根据力的平衡条件得
(p10-p)·2S=(p0-p)·S①
得p10=(p0+p).②
(2)设抽气后氢气的压强和体积分别为p1和V1,氮气的压强和体积分别为p2和V2.
根据力的平衡条件有p2·S=p1·2S③
由玻意耳定律得
p1V1=p10·2V0④
p2V2=p0V0⑤
由于两活塞用刚性杆连接,故
V1-2V0=2(V0-V2)⑥
联立②③④⑤⑥式解得
p1=p0+p
V1=.
答案:(1)(p0+p) (2)p0+p
迁移2 等容变化——查理定律
2.(2017·高考全国卷Ⅰ)如图,容积均为V的汽缸A、B下端有细管(容积可忽略)连通,阀门K2位于细管的中部,A、B的顶部各有一阀门K1、K3;B中有一可自由滑动的活塞(质量、体积均可忽略).初始时,三个阀门均打开,活塞在B的底部;关闭K2、K3,通过K1给汽缸充气,使A中气体的压强达到大气压p0的3倍后关闭K1.已知室温为27 ℃,汽缸导热.
(1)打开K2,求稳定时活塞上方气体的体积和压强;
(2)接着打开K3,求稳定时活塞的位置;
(3)再缓慢加热汽缸内气体使其温度升高20 ℃,求此时活塞下方气体的压强.
解析:(1)设打开K2后,稳定时活塞上方气体的压强为p1,体积为V1.依题意,被活塞分开的两部分气体都经历等温过程.由玻意耳定律得
p0V=p1V1①
(3p0)V=p1(2V-V1)②
联立①②式得
V1=③
p1=2p0.④
(2)打开K3后,由④式知,活塞必定上升.设在活塞下方气体与A中气体的体积之和为V2(V2≤2V)时,活塞下气体压强为p2.由玻意耳定律得(3p0)V=p2V2 ⑤
由⑤式得
p2=p0⑥
由⑥式知,打开K3后活塞上升直到B的顶部为止;此时p2为p′2=p0.
(3)设加热后活塞下方气体的压强为p3,气体温度从T1=300 K升高到T2=320 K的等容过程中,由查理定律得
=⑦
将有关数据代入⑦式得
p3=1.6p0.
答案:见解析
迁移3 等压变化——盖—吕萨克定律
3.如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0 cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0 cm.若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同.已知大气压强为76 cmHg,环境温度为296 K.
(1)求细管的长度;
(2)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度.
解析:(1)设细管的长度为L,横截面的面积为S,水银柱高度为h,初始时,设水银柱上表面到管口的距离为h1,被密封气体的体积为V,压强为p;细管倒置时,气体体积为V1,压强为p1.由玻意耳定律有
pV=p1V1①
由力的平衡条件有
p=p0+ρgh②
p1=p0-ρgh③
式中,ρ、g分别为水银的密度和重力加速度的大小,p0为大气压强.由题意有
V=S(L-h1-h)④
V1=S(L-h)⑤
由①②③④⑤式和题给条件得
L=41 cm.⑥
(2)设气体被加热前后的温度分别为T0和T,由盖—吕萨克定律有
=⑦
由④⑤⑥⑦式和题给数据得
T=312 K.
答案:(1)41 cm (2)312 K
迁移4 气体实验定律中的图象问题分析
4.如图甲是一定质量的气体由状态A经过状态B变为状态C的V-T图象.已知气体在状态A时的压强是1.5×105 Pa.
(1)说出A→B过程中压强变化的情形,并根据图象提供的信息,计算图甲中TA的温度值.
(2)请在图乙所示的坐标系中,作出该气体由状态A经过状态B变为状态C的p-T图象,并在图线相应位置上标出字母A、B、C.如果需要计算才能确定的有关坐标值,请写出计算过程.
解析:(1)从题图甲可以看出,A与B连线的延长线过原点,所以A→B是一个等压变化,即pA=pB
根据盖—吕萨克定律可得=
所以TA=TB=×300 K=200 K.
(2)由题图甲可知,由B→C是等容变化,根据查理定律得=,所以pC=pB=2.0×105 Pa
则可画出由状态A→B→C的p-T图象如图所示.
答案:见解析
理想气体状态方程[学生用书P266]
【知识提炼】
应用理想气体状态方程解题的一般步骤
(1)明确研究对象,即某一定质量的理想气体.
(2)确定气体在始末状态的参量p1、V1、T1及p2、V2、T2.
(3)由状态方程列式求解.
(4)讨论结果的合理性.
【典题例析】
如图所示,有两个不计质量和厚度的活塞M、N,将两部分理想气体A、B封闭在绝热汽缸内,温度均是27 ℃.M活塞是导热的,N活塞是绝热的,均可沿汽缸无摩擦地滑动,已知活塞的横截面积均为S=2 cm2,初始时M活塞相对于底部的高度为h1=27 cm,N活塞相对于底部的高度为h2=18 cm.现将一质量为m=1 kg的小物体放在M活塞的上表面上,活塞下降.已知大气压强为p0=1.0×105 Pa.(取g=10 m/s2)
(1)求下部分气体的压强;
(2)现通过电热丝对下部分气体进行缓慢加热,使下部分气体的温度变为127 ℃,求稳定后活塞M、N距离底部的高度.
[解析] (1)设末状态下部分气体的压强为p,以两个活塞和重物作为整体进行受力分析得
pS=mg+p0S
得p=p0+=1.5×105 Pa.
(2)对下部分气体进行分析,初状态压强为p0,体积为h2S,温度为T1,末状态压强为p,体积设为h3S,即N活塞相对底部的高度为h3,温度为T2
由理想气体状态方程可得=
得h3=h2=16 cm
对上部分气体进行分析,根据玻意耳定律可得
p0(h1-h2)S=pLS
得L=6 cm
故此时活塞M距离底部的高度为
h4=16 cm+6 cm=22 cm.
[答案] (1)1.5×105 Pa (2)22 cm 16 cm
【迁移题组】
迁移1 理想气体状态方程的应用
1.一质量M=10 kg、高度L=35 cm的圆柱形汽缸,内壁光滑,汽缸内有一薄活塞封闭了一定质量的理想气体,活塞质量m=4 kg、截面积S=100 cm2.温度t0=27 ℃时,用绳子系住活塞将汽缸悬挂起来,如图甲所示,汽缸内气体柱的高L1=32 cm.如果用绳子系住汽缸底,将汽缸倒过来悬挂起来,如图乙所
示,汽缸内气体柱的高L2=30 cm,两种情况下汽缸都处于竖直状态,重力加速度g取9.8 m/s2.
(1)求当时的大气压强;
(2)图乙状态时,在活塞下挂一质量m′=3 kg的物体,如图丙所示,则温度升高到多少时,活塞将从汽缸中脱落?
解析:(1)由题图甲状态到图乙状态,为等温变化
p1=p0-,p2=p0-
由玻意耳定律有p1L1S =p2L2S
所以L1S=L2S
可解得p0==9.8×104 Pa.
(2)活塞脱落的临界状态:气柱体积为LS
压强p3=p0-
设温度为t,由理想气体状态方程:
=
得t=-273 K=66 ℃.
答案:(1)9.8×104 Pa (2)66 ℃
迁移2 理想气体状态方程与图象的综合应用
2.(2020·河北唐山模拟)回热式制冷机是一种深低温设备,制冷极限约50 K.某台设备工作时,一定量的氦气(可视为理想气体)缓慢经历如图所示的四个过程:从状态A到B和C到D是等温过程,温度分别为t1=27 ℃和t2=-133 ℃;从状态B到C和D到A是等容过程,体积分别为V0和5V0.求状态B与D的压强之比.
解析:A到B、C到D均为等温过程,则TB=(27+273)K=300 K,TD=(-133+273)K=140 K,由理想气体状态方程可知:=
得:===≈10.7.
答案:10.7
[学生用书P395(单独成册)]
(建议用时:40分钟)
一、选择题
1.(2020·辽宁锦州模拟)在甲、乙、丙三种固体薄片上涂上蜡,用烧热的针接触其上一点,蜡熔化的范围如图所示.甲、乙、丙三种固体在熔化过程中温度随加热时间变化的关系如图所示,则( )
A.甲、乙为非晶体,丙是晶体
B.甲、丙为晶体,乙是非晶体
C.甲、丙为非晶体,乙是晶体
D.甲为多晶体,乙为非晶体,丙为单晶体
解析:选B.由题图可知,甲、乙在导热性质上表现各向同性,丙具有各向异性,甲、丙有固定的熔点,乙无固定的熔点,所以甲、丙为晶体,乙是非晶体,B正确;甲为晶体,但仅从图中无法确定它的其他性质,所以甲可能是单晶体,也可能是多晶体,丙为单晶体,故A、C、D错误.
2.下列说法正确的是( )
A.将一块晶体敲碎后,得到的小颗粒是非晶体
B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质
C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体
D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体
E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变
解析:选BCD.将一块晶体敲碎后,得到的小颗粒仍是晶体,故A错误;单晶体具有各向异性,有些单晶体沿不同方向上的光学性质不同,故B正确;例如金刚石和石墨由同种元素构成,但由于原子的排列方式不同而成为不同的晶体,故C正确;晶体与非晶体在一定条件下可以相互转化.如天然水晶是晶体,熔融过的水晶(即石英玻璃)是非晶体,也有些非晶体在一定条件下可转化为晶体,故D正确;熔化过程中,晶体的温度不变,但内能改变,故E错误.
3.下列说法正确的是( )
A.水的饱和汽压随温度的升高而增加
B.浸润和不浸润现象是液体分子间相互作用的表现
C.一定质量的0 ℃的水的内能大于等质量的0 ℃的冰的内能
D.气体的压强是由于气体分子间的相互排斥而产生的
E.一些昆虫可以停在水面上,是由于水表面存在表面张力
解析:选ACE.饱和汽压与液体材料和温度有关,温度越高,饱和汽压越大,故A正确;浸润与不浸润均是分子作用的表现,是由于液体的表面层与固体表面之间的分子之间相互作用的结果,故B错误;由于水结冰要放热,故一定质量的0 ℃的水的内能大于等质量的0 ℃的冰的内能,故C正确;气体的压强是由气体分子对容器壁的频繁碰撞引起,与分子数密度和平均动能有关,故D错误;小昆虫可以停在水面上,由于水表面存在表面张力,故E正确.
4.(2020·陕西汉中高三一模)下列说法正确的是( )
A.晶体一定具有规则的形状且有各向异性的特征
B.液体的分子势能与液体的体积无关
C.实际的气体的体积变化时,其内能可能不变
D.组成固体、液体、气体的物质分子依照一定的规律在空间整齐地排列成“空间点阵”
解析:选C.单晶体一定具有规则的形状,且有各向异性的特征,而多晶体的物理性质表现为各向同性,选项A错误;分子势能的产生是由于分子间存在作用力,微观上分子间距离的变化引起宏观上体积的变化,分子间作用力变化,分子势能才变化,选项B错误;当气体体积变化时,若温度同时发生变化,气体内能可能不变,选项C正确;只有晶体的分子依照一定的规律在空间整齐地排列成“空间点阵”,选项D错误.
5.(2020·湖北武汉模拟)如图所示,是水的饱和汽压与温度关系的图线,请结合饱和汽与饱和汽压的知识判断下列说法正确的是( )
A.水的饱和汽压随温度的变化而变化,温度升高,饱和汽压增大
B.在一定温度下,饱和汽的分子数密度是不变的
C.当液体处于饱和汽状态时,液体会停止蒸发现象
D.在实际问题中,饱和汽压包括水蒸气的气压和空气中其他各种气体的气压
解析:选AB.当液体处于饱和汽状态时,液体与气体达到了一种动态平衡,液体蒸发现象不会停止,C错误;在实际问题中,水面上方含有水分子、空气中的其他分子,但我们所研究的饱和汽压只是水蒸气的分气压,D错误.
6.一定
质量的理想气体,从图中A状态开始,经历了B、C,最后到D状态,下列说法中正确的是( )
A.A→B温度升高,体积不变
B.B→C压强不变,体积变大
C.C→D压强变小,体积变小
D.B点的温度最高,C点的体积最大
解析:选A.在p-T图象中,各点与原点连线斜率的倒数表示气体的体积,所以四个状态体积的大小关系为VA=VB>VD>VC.
7.(2020·江苏南京模拟)一定质量的理想气体,经等温压缩,气体的压强增大,用分子动理论的观点分析,这是因为 ( )
A.气体分子的平均速率不变
B.气体分子每次碰撞器壁的平均冲力增大
C.单位时间内单位面积器壁上受到气体分子碰撞的次数增多
D.气体分子的总数增加
E.气体分子的密度增大
解析:选ACE.气体温度不变,分子平均动能、平均速率均不变,A正确;理想气体经等温压缩,压强增大,体积减小,分子密度增大,则单位时间内单位面积器壁上受到气体分子的碰撞次数增多,但气体分子每次碰撞器壁的冲力不变,C、E正确,B、D错误.
8.如图所示,粗细均匀的玻璃管A和B由一橡皮管连接,一定质量的空气被水银柱封闭在A管内,初始时两管水银面等高,B管上方与大气相通.若固定A管,将B管沿竖直方向缓慢下移一小段距离H,A管内的水银面高度相应变化h,则( )
A.h=H B.h<
C.h= D.
9.如图,一定量的理想气体从状态a沿直线变化到状态b,在此过程中,其压强( )
A.逐渐增大
B.逐渐减小
C.始终不变
D.先增大后减小
解析:选A.法一:由题图可知,气体从状态a变到状态b,体积逐渐减小,温度逐渐升高,由=C可知,压强逐渐增大,故A正确.
法二:由=C得:V=T,从a到b,ab段上各点与O点连线的斜率逐渐减小,即逐渐减小,p逐渐增大,故A正确.
二、非选择题
10.(2019·高考全国卷Ⅱ)如p-V图所示,1、2、3三个点代表某容器中一定量理想气体的三个不同状态,对应的温度分别是T1、T2、T3.用N1、N2、N3分别表示这三个状态下气体分子在单位时间内撞击容器壁上单位面积的平均次数,则N1________N2,T1________T3,N2________N3.(填“大于”“小于”或“等于”)
解析:对一定质量的理想气体,为定值,由p-V图象可知,2p1·V1=p1·2V1>p1·V1,所以T1=T3>T2.状态1与状态2时气体体积相同,单位体积内分子数相同,但状态1下的气体分子平均动能更大,在单位时间内撞击器壁单位面积的平均次数更多,所以N1>N2;状态2与状态3时气体压强相同,状态3下的气体分子平均动能更大,在单位时间内撞击器壁单位面积的平均次数较少,所以N2>N3.
答案:大于 等于 大于
11.(2018·高考全国卷Ⅲ)在两端封闭、粗细均匀的U形细玻璃管内有一段水银柱,水银柱的两端各封闭有一段空气.当U形管两端竖直朝上时,左、右两边空气柱的长度分别为l1=18.0 cm和l2=12.0 cm,左边气体的压强为12.0 cmHg.现将U形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U形管平放时两边空气柱的长度.在整个过程中,气体温度不变.
解析:
设U形管两端竖直朝上时,左、右两边气体的压强分别为p1和p2.U形管水平放置时,两边气体压强相等,设为p,此时原左、右两边气柱长度分别变为l′1和l′2.由力的平衡条件有
p1=p2+ρg(l1-l2)①
式中ρ为水银密度,g为重力加速度大小
由玻意耳定律有
p1l1=pl′1②
p2l2=pl′2③
两边气柱长度的变化量大小相等
l′1-l1=l2-l′2④
由①②③④式和题给条件得
l′1=22.5 cm
l′2=7.5 cm.
答案:见解析
12.(2018·高考全国卷Ⅱ)如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a和b,a、b间距为h,a距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体.已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦.开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0.现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b处.求此时汽缸内气体的温度以及在此过程中气体对外所做的功.重力加速度大小为g.
解析:开始时活塞位于a处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动.设此时汽缸中气体的温度为T1,压强为p1,根据查理定律有
=①
根据力的平衡条件有p1S=p0S+mg②
联立①②式可得
T1=(1+)T0③
此后,汽缸中的气体经历等压过程,直至活塞刚好到达b处,设此时汽缸中气体的温度为T2;活塞位于a处和b处时气体的体积分别为V1和V2.根据盖—吕萨克定律有=④
式中
V1=SH⑤
V2=S(H+h)⑥
联立③④⑤⑥式解得
T2=(1+)(1+)T0
从开始加热到活塞到达b处的过程中,汽缸中的气体对外做的功为
W=(p0S+mg)h.
答案:见解析
相关资料
更多