所属成套资源:新课改专用2020版高考数学一轮跟踪检测练习题及答案解析
新课改专用2020版高考数学一轮跟踪检测18《题型研究-“函数与导数”大题常考的3类题型》(含解析)
展开课时跟踪检测(十八) 题型研究——“函数与导数”大题常考的3类题型1.设函数f(x)=(1-x2)ex.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a的取值范围.解:(1)f′(x)=(1-2x-x2)ex,令f′(x)=0,得x=-1±,当x∈(-∞,-1-)时,f′(x)<0;当x∈(-1-,-1+)时,f′(x)>0;当x∈(-1+,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-),(-1+,+∞)上单调递减,在(-1-,-1+)上单调递增.(2)令g(x)=f(x)-ax-1=(1-x2)ex-(ax+1),令x=0,可得g(0)=0.g′(x)=(1-x2-2x)ex-a,令h(x)=(1-x2-2x)ex-a,则h′(x)=-(x2+4x+1)ex,当x≥0时,h′(x)<0,h(x)在[0,+∞)上单调递减,故h(x)≤h(0)=1-a,即g′(x)≤1-a,要使f(x)-ax-1≤0在x≥0时恒成立,需要1-a≤0,即a≥1,此时g(x)≤g(0)=0,故a≥1.综上所述,实数a的取值范围是[1,+∞).2.(2019·重庆调研)设函数f(x)=-x2+ax+ln x(a∈R).(1)当a=-1时,求函数f(x)的单调区间;(2)若函数f(x)在上有两个零点,求实数a的取值范围.解:(1)函数f(x)的定义域为(0,+∞),当a=-1时,f′(x)=-2x-1+=,令f′(x)=0,得x=(负值舍去),当0<x<时,f′(x)>0;当x>时,f′(x)<0.∴f(x)的单调递增区间为,单调递减区间为,+∞.(2)令f(x)=-x2+ax+ln x=0,得a=x-.令g(x)=x-,其中x∈,则g′(x)=1-=,令g′(x)=0,得x=1,当≤x<1时,g′(x)<0;当1<x≤3时,g′(x)>0,∴g(x)的单调递减区间为,单调递增区间为(1,3],∴g(x)min=g(1)=1,∵函数f(x)在上有两个零点,g=3ln 3+,g(3)=3-,3ln 3+>3-,∴实数a的取值范围是.3.已知函数f(x)=(a∈R).(1)求函数f(x)的单调区间;(2)若∀x∈[1,+∞),不等式f(x)>-1恒成立,求实数a的取值范围.解:(1)f′(x)=,当a≤-时,x2-2x-2a≥0,f′(x)≥0,∴函数f(x)在(-∞,+∞)上单调递增.当a>-时,令x2-2x-2a=0,解得x1=1-,x2=1+.∴函数f(x)的单调递增区间为(-∞,1-)和(1+,+∞),单调递减区间为(1-,1+).(2)f(x)>-1⇔>-1⇔2a>x2-ex,由条件知,2a>x2-ex对∀x≥1恒成立.令g(x)=x2-ex,h(x)=g′(x)=2x-ex,∴h′(x)=2-ex.当x∈[1,+∞)时,h′(x)=2-ex≤2-e<0,∴h(x)=g′(x)=2x-ex在[1,+∞)上单调递减,∴h(x)=2x-ex≤2-e<0,即g′(x)<0,∴g(x)=x2-ex在[1,+∞)上单调递减,∴g(x)=x2-ex≤g(1)=1-e,故若f(x)>-1在[1,+∞)上恒成立,则需2a>g(x)max=1-e,∴a>,即实数a的取值范围是.4.(2019·广西柳州模拟)已知a为实数,函数f(x)=aln x+x2-4x.(1)若x=3是函数f(x)的一个极值点,求实数a的取值;(2)设g(x)=(a-2)x,若∃x0∈,使得f(x0)≤g(x0)成立,求实数a的取值范围.解:(1)函数f(x)的定义域为(0,+∞),f′(x)=+2x-4=.∵x=3是函数f(x)的一个极值点,∴f′(3)=0,解得a=-6.经检验a=-6时,x=3是函数f(x)的一个极小值点,符合题意,∴a=-6.(2)由f(x0)≤g(x0),得(x0-ln x0)a≥x-2x0,记F(x)=x-ln x(x>0),∴F′(x)=(x>0),∴当0<x<1时,F′(x)<0,F(x)单调递减;当x>1时,F′(x)>0,F(x)单调递增.∴F(x)≥F(1)=1>0,∴a≥.记G(x)=,x∈,∴G′(x)==.∵x∈,∴2-2ln x=2(1-ln x)≥0,∴x-2ln x+2>0,∴x∈时,G′(x)<0,G(x)单调递减;x∈(1,e)时,G′(x)>0,G(x)单调递增.∴G(x)min=G(1)=-1,∴a≥G(x)min=-1.故实数a的取值范围为[-1,+∞).5.(2019·武汉调研)已知函数f(x)=ln x+,a∈R.(1)讨论函数f(x)的单调性;(2)当a>0时,证明f(x)≥.解:(1)f′(x)=-=(x>0).当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.当a>0时,若x>a,则f′(x)>0,函数f(x)在(a,+∞)上单调递增;若0<x<a,则f′(x)<0,函数f(x)在(0,a)上单调递减.(2)证明:由(1)知,当a>0时,f(x)min=f(a)=ln a+1.要证f(x)≥,只需证ln a+1≥,即证ln a+-1≥0.令函数g(a)=ln a+-1,则g′(a)=-=(a>0),当0<a<1时,g′(a)<0,当a>1时,g′(a)>0,所以g(a)在(0,1)上单调递减,在(1,+∞)上单调递增,所以g(a)min=g(1)=0.所以ln a+-1≥0恒成立,所以f(x)≥.6.(2019·唐山模拟)已知f(x)=x2-a2ln x,a>0.(1)若f(x)≥0,求a的取值范围;(2)若f(x1)=f(x2),且x1≠x2,证明:x1+x2>2a.解:(1)f′(x)=x-=(x>0).当x∈(0,a)时,f′(x)<0,f(x)单调递减;当x∈(a,+∞)时,f′(x)>0,f(x)单调递增.当x=a时,f(x)取最小值f(a)=a2-a2ln a.令a2-a2ln a≥0,解得0<a<.故a的取值范围是(0,].(2)证明:由(1)知,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,不失一般性,设0<x1<a<x2<2a,则2a-x2<a.要证x1+x2>2a,即x1>2a-x2,则只需证f(x1)<f(2a-x2).因为f(x1)=f(x2),则只需证f(x2)<f(2a-x2).设g(x)=f(x)-f(2a-x),a≤x≤2a.则g′(x)=x-+2a-x-=-≤0,所以g(x)在[a,2a)上单调递减,从而g(x)≤g(a)=0.又a<x2<2a,于是g(x2)=f(x2)-f(2a-x2)<0,即f(x2)<f(2a-x2).因此x1+x2>2a.