![人教版七年级上册数学讲义 第17讲 一元一次方程全章复习与巩固01](http://m.enxinlong.com/img-preview/2/3/5740194/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版七年级上册数学讲义 第17讲 一元一次方程全章复习与巩固02](http://m.enxinlong.com/img-preview/2/3/5740194/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版七年级上册数学讲义 第17讲 一元一次方程全章复习与巩固03](http://m.enxinlong.com/img-preview/2/3/5740194/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学第三章 一元一次方程综合与测试教案
展开【知识网络】
【要点梳理】
要点一、一元一次方程的概念
1.方程:含有未知数的等式叫做方程.
2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.
要点诠释:
(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.
(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;
②未知数所在的式子是整式,即分母中不含未知数.
3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.
4.解方程:求方程的解的过程叫做解方程.
要点二、等式的性质与去括号法则
1.等式的性质:
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.
2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.
3.去括号法则:
(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.
要点三、一元一次方程的解法
解一元一次方程的一般步骤:
(1)去分母:在方程两边同乘以各分母的最小公倍数.
(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.
(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.
(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.
(5)系数化为1:方程两边同除以未知数的系数得到方程的解(a≠0).
(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.
要点四、用一元一次方程解决实际问题的常见类型
1.行程问题:路程=速度×时间
2.和差倍分问题:增长量=原有量×增长率
3.利润问题:商品利润=商品售价-商品进价
4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量
5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数
6.数字问题:多位数的表示方法:例如:.
【典型例题】
类型一、一元一次方程的相关概念
1.已知方程(3m-4)x2-(5-3m)x-4m=-2m是关于x的一元一次方程,求m和x的值.
举一反三:
【变式】下面方程变形中,错在哪里:
(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).
方程 x-y=-(x-y)两边都除以x-y, 得1=-1.
(2),去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.
2. 如果5(x+2)=2a+3与的解相同,那么a的值是________.
【变式】已知|x+1|+(y+2x)2=0,则________.
类型二、一元一次方程的解法
3.解方程:.
举一反三:
【变式1】解方程
【变式2】解方程: .
4.解方程3{2x-1-[3(2x-1)+3]}=5.
类型三、特殊的一元一次方程的解法
1.解含字母系数的方程
5.解关于的方程:
2.解含绝对值的方程
6. 解方程|x-2|=3.
举一反三:
【变式1】若关于的方程无解,只有一个解,有两个解,
则的大小关系为: ( )
A. B. C. D.
【变式2】若是方程的解,则;又若当时,则方程的解是 .
类型四、一元一次方程的应用
7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?
8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?
举一反三:
【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?
【典型复习题】
一、选择题
1.已知方程是关于x的一元一次方程,则m的值是( ).
A.±1 B.1 C.-1 D.0或1
2.已知是方程的解,那么关于y的方程的解是( ).
A.y=1 B.y=-1 C.y=0 D.方程无解
3.已知,则等于( ).
A. B. C. D.
4.一列火车长100米,以每秒20米的速度通过800米长的隧道,从火车进入隧道起,至火车完全通过所用的时间为( ).
A.50秒 B.40秒 C.45秒 D.55秒
5.一架飞机在两城间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,求两城距离x的方程是( )
A. B. C. D.
6.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( )
A.80元B.100元 C.120元D.160元
二、填空题
7.已知方程是关于x的一元一次方程,则这个方程的解为________.
8.已知和互为相反数,则________.
9.当x=________时,代数式的值为-1.
10.一商店把某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则标价是每件 元.
11.某种中草药含甲、乙、丙、丁四种草药成分,这四种草药成分的质量比
是0.7∶1∶2∶4.7。现在要配制这种中药1400克,这四种草药分别需要多少克?设每份为克,根据题意,得_________________________.
12.有一列数,按一定的规律排列:―1,2,―4,8,―16,32,―64,128,…,其中某三个相邻数之和为384,这三个数分别是 .
三、解答题
13.解方程:
(1). (2)
(3)|3x-2|-4=0
(4)探究:当b为何值时,方程|x-2|=b+1 ① 无解;②只有一个解;③ 有两个解.
14.右图的数阵是由一些奇数排成的. 1 3 5 7 9
(1)右图框中的四个数有什么关系?(设框中第一行第一个数 11 13 15 17 19
为) …… …… ……
(2)若这样框出的四个数的和是200,求这四个数. 91 93 95 97 99
(3)是否存在这样的四个数,它们的和为420,为什么?
15.商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?
2021年人教版八年级数学下册暑假复习巩固提高讲义 第17讲 期末模拟三(含部分答案): 这是一份2021年人教版八年级数学下册暑假复习巩固提高讲义 第17讲 期末模拟三(含部分答案),共7页。教案主要包含了认真选一选,仔细解答等内容,欢迎下载使用。
2021年暑假人教版七年级数学上册第15讲 一元一次方程全章复习 复习讲义(无答案): 这是一份2021年暑假人教版七年级数学上册第15讲 一元一次方程全章复习 复习讲义(无答案),共11页。教案主要包含了学习目标,知识网络,要点梳理,典型例题,思路点拨,总结升华,答案与解析等内容,欢迎下载使用。
【精品讲义】中考数学一轮复习 第17讲 统计与概率: 这是一份【精品讲义】中考数学一轮复习 第17讲 统计与概率,共10页。